This commit is contained in:
2
main.tex
2
main.tex
@@ -335,7 +335,7 @@ L(\lambda^*)\geq \opt(LD)+\lambda^* b -\lambda c(F^{LD}) = w(C^{LD}-F^{LD}) \geq
|
||||
\end{equation}
|
||||
since $\opt(IP)$ is the smallest $b$-free min cut.
|
||||
|
||||
We have $L(\lambda^*)\leq w_{\lambda^*}*(C^*)$ since $L(\lambda^*)$ is the value of the minimum cut in $(G,w_{\lambda^*})$. Now we prove $L(\lambda^*)+b\lambda \geq w_{\lambda^*}*(C^*)$.
|
||||
We have $L(\lambda^*)\leq w_{\lambda^*}(C^*)$ since $L(\lambda^*)$ is the value of the minimum cut in $(G,w_{\lambda^*})$. Now we prove $L(\lambda^*)+b\lambda \geq w_{\lambda^*}(C^*)$.
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
|
||||
Reference in New Issue
Block a user