From 35e00b921bb968937ff9cc262884a0f98f952828 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Mon, 20 Oct 2025 15:39:01 +0800 Subject: [PATCH] fix typo --- main.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/main.tex b/main.tex index a780b82..a0133df 100644 --- a/main.tex +++ b/main.tex @@ -335,7 +335,7 @@ L(\lambda^*)\geq \opt(LD)+\lambda^* b -\lambda c(F^{LD}) = w(C^{LD}-F^{LD}) \geq \end{equation} since $\opt(IP)$ is the smallest $b$-free min cut. -We have $L(\lambda^*)\leq w_{\lambda^*}*(C^*)$ since $L(\lambda^*)$ is the value of the minimum cut in $(G,w_{\lambda^*})$. Now we prove $L(\lambda^*)+b\lambda \geq w_{\lambda^*}*(C^*)$. +We have $L(\lambda^*)\leq w_{\lambda^*}(C^*)$ since $L(\lambda^*)$ is the value of the minimum cut in $(G,w_{\lambda^*})$. Now we prove $L(\lambda^*)+b\lambda \geq w_{\lambda^*}(C^*)$. \begin{equation*} \begin{aligned}