...
This commit is contained in:
parent
7f200d09c2
commit
883e95d3ee
@ -167,8 +167,9 @@
|
|||||||
}
|
}
|
||||||
|
|
||||||
% more theorem env
|
% more theorem env
|
||||||
\newtheorem{observation}{Observation}
|
\newtheorem{conjecture}[theorem]{Conjecture}
|
||||||
\newtheorem{question}{Question}
|
\newtheorem{observation}[theorem]{Observation}
|
||||||
|
\newtheorem{question}[theorem]{Question}
|
||||||
|
|
||||||
|
|
||||||
% ----------------------------------------------------------------------
|
% ----------------------------------------------------------------------
|
||||||
|
17
main.tex
17
main.tex
@ -1,5 +1,6 @@
|
|||||||
\documentclass{beamer}
|
\documentclass{beamer}
|
||||||
\usepackage{nicefrac}
|
\usepackage{nicefrac}
|
||||||
|
\DeclareMathOperator*{\opt}{OPT}
|
||||||
|
|
||||||
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
|
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
|
||||||
\date{\today}
|
\date{\today}
|
||||||
@ -78,7 +79,7 @@ The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal
|
|||||||
|
|
||||||
Let $\tau$ be the optimum of Normalized Mincut. Consider a truncated weight $w_\tau(e)= \min \{w(e),c(e)\tau\}$.
|
Let $\tau$ be the optimum of Normalized Mincut. Consider a truncated weight $w_\tau(e)= \min \{w(e),c(e)\tau\}$.
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}\label{thm:2approx}
|
||||||
The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of global mincut with weights $w_\tau$.
|
The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of global mincut with weights $w_\tau$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@ -168,7 +169,21 @@ s.t.& & \sum_{T\ni e} z_T &\leq w(e) & &\forall e\in E\\
|
|||||||
Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\sum z_T \leq w(e)$ and $\sum z_T \leq c(e)\mu$ only one of them works. The real capacity for this fractional tree packing is $\min\{w(e),c(e)\mu\}$, which is exactly the truncated weight $w_\tau$.
|
Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\sum z_T \leq w(e)$ and $\sum z_T \leq c(e)\mu$ only one of them works. The real capacity for this fractional tree packing is $\min\{w(e),c(e)\mu\}$, which is exactly the truncated weight $w_\tau$.
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Integrality Gap}
|
||||||
|
\begin{conjecture}
|
||||||
|
ILP\ref{IP} has an integrality gap of 4.
|
||||||
|
\end{conjecture}
|
||||||
|
|
||||||
|
Suppose $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ be the fractional mincut with capacity $w_\mu$.
|
||||||
|
|
||||||
|
we have
|
||||||
|
\begin{align*}
|
||||||
|
4\opt(LP) &=4\lambda^{fr}-4b\mu^*\\
|
||||||
|
&\geq 2\lambda^{int} - 4b\mu^*\\
|
||||||
|
&\geq w_{\mu^*}(C^*)-b\mu^*,
|
||||||
|
\end{align*}
|
||||||
|
which implies Theorem \autoref{thm:2approx}.
|
||||||
|
\end{frame}
|
||||||
\begin{frame}{References}
|
\begin{frame}{References}
|
||||||
\bibliographystyle{plainnat}
|
\bibliographystyle{plainnat}
|
||||||
\bibliography{ref}
|
\bibliography{ref}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user