From 883e95d3ee4b48ddf50497635501c63fef736607 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Sun, 4 May 2025 13:36:28 +0800 Subject: [PATCH] ... --- beamerthemeSimple.sty | 5 +++-- main.tex | 17 ++++++++++++++++- 2 files changed, 19 insertions(+), 3 deletions(-) diff --git a/beamerthemeSimple.sty b/beamerthemeSimple.sty index 728ace4..2f8aa6c 100644 --- a/beamerthemeSimple.sty +++ b/beamerthemeSimple.sty @@ -167,8 +167,9 @@ } % more theorem env -\newtheorem{observation}{Observation} -\newtheorem{question}{Question} +\newtheorem{conjecture}[theorem]{Conjecture} +\newtheorem{observation}[theorem]{Observation} +\newtheorem{question}[theorem]{Question} % ---------------------------------------------------------------------- diff --git a/main.tex b/main.tex index 0b63e83..9e79737 100644 --- a/main.tex +++ b/main.tex @@ -1,5 +1,6 @@ \documentclass{beamer} \usepackage{nicefrac} +\DeclareMathOperator*{\opt}{OPT} \title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction} \date{\today} @@ -78,7 +79,7 @@ The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal Let $\tau$ be the optimum of Normalized Mincut. Consider a truncated weight $w_\tau(e)= \min \{w(e),c(e)\tau\}$. -\begin{theorem} +\begin{theorem}\label{thm:2approx} The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of global mincut with weights $w_\tau$. \end{theorem} \end{frame} @@ -168,7 +169,21 @@ s.t.& & \sum_{T\ni e} z_T &\leq w(e) & &\forall e\in E\\ Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\sum z_T \leq w(e)$ and $\sum z_T \leq c(e)\mu$ only one of them works. The real capacity for this fractional tree packing is $\min\{w(e),c(e)\mu\}$, which is exactly the truncated weight $w_\tau$. \end{frame} +\begin{frame}{Integrality Gap} +\begin{conjecture} +ILP\ref{IP} has an integrality gap of 4. +\end{conjecture} +Suppose $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ be the fractional mincut with capacity $w_\mu$. + +we have +\begin{align*} +4\opt(LP) &=4\lambda^{fr}-4b\mu^*\\ + &\geq 2\lambda^{int} - 4b\mu^*\\ + &\geq w_{\mu^*}(C^*)-b\mu^*, +\end{align*} +which implies Theorem \autoref{thm:2approx}. +\end{frame} \begin{frame}{References} \bibliographystyle{plainnat} \bibliography{ref}