breakpoints & weight truncation
This commit is contained in:
parent
3b2b24cd58
commit
7f200d09c2
55
main.tex
55
main.tex
@ -105,7 +105,7 @@ complexity: $\tilde{O}(m^2n^4/\epsilon)$.
|
||||
|
||||
\begin{frame}{LP Method}
|
||||
\citep{vygen_fptas_2024} gives a strong framework but the intuition behind is vague.
|
||||
\begin{equation}
|
||||
\begin{equation}\label{IP}
|
||||
\begin{aligned}
|
||||
\min& & \sum_{e} x_e w(e) & & & &\\
|
||||
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is a cut)}\\
|
||||
@ -116,6 +116,59 @@ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Normalized Mincut from LP}
|
||||
One standard trick for dealing LPs with knapsack constraints is to consider its Lagrangian dual.
|
||||
\begin{equation*}
|
||||
\max_{\mu\geq 0} L(\mu)= \max_{\mu\geq 0} \min \left\{ w(C-F)-\mu(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C
|
||||
% \land c(F)\leq b
|
||||
\right\}
|
||||
\end{equation*}
|
||||
|
||||
\begin{lemma}
|
||||
$L(\mu)$ is piecewise linear and concave.
|
||||
\end{lemma}
|
||||
|
||||
For fixed $\mu$, how to solve $\min\limits_{C,F} \left\{ w(C-F)-\mu(b-c(F))
|
||||
\right\}$?
|
||||
|
||||
For small enough $\mu\geq 0$, $w(C-F)$ term is dominanting.
|
||||
Thus the optimal solution must be $C=F=\text{mincut with weight $c$}$.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Breakpoints on $L(\mu)$}
|
||||
We have see that the first line segment is $L(\mu)=(\lambda_c-b)\mu$ where $\lambda_c$ is the value of mincut with capacity $c$.
|
||||
|
||||
What is the first breakpoint on $L(\mu)$?
|
||||
\newline
|
||||
|
||||
We have $-\mu(b-\lambda_c)\leq w(C- F)-\mu(b-c(F))$ for any cut $C$ and $F\subsetneq C$. Thus the first breakpoint is $\mu=\min \frac{w(C- F)}{\lambda_c-c(F)}$, which is the value of normalized mincut.
|
||||
\newline
|
||||
|
||||
What about other breakpoints? Currently I can only prove the following :(
|
||||
\begin{lemma}
|
||||
$\lambda_i=\min \frac{w(C- F)-w(C_{i-1}- F_{i-1})}{c(F_{i-1})-c(F)}$, where the minimum is taken over all cut $C$ and $F\subset C$ such that both the numerator and denominator are positive.
|
||||
\end{lemma}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Weight Truncation from LP}
|
||||
Consider the dual of linear relaxation of ILP\ref{IP}.
|
||||
|
||||
\begin{equation}\label{lp:dualcutint}
|
||||
\begin{aligned}
|
||||
\max& & \sum_T z_T &- b\mu & &\\
|
||||
s.t.& & \sum_{T\ni e} z_T &\leq w(e) & &\forall e\in E\\
|
||||
& & \sum_{T\ni e} z_T &\leq c(e)\mu & &\forall e \in E\\
|
||||
& & z_T,\mu &\geq 0 & &
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\sum z_T \leq w(e)$ and $\sum z_T \leq c(e)\mu$ only one of them works. The real capacity for this fractional tree packing is $\min\{w(e),c(e)\mu\}$, which is exactly the truncated weight $w_\tau$.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{References}
|
||||
\bibliographystyle{plainnat}
|
||||
\bibliography{ref}
|
||||
|
Loading…
x
Reference in New Issue
Block a user