From 7f200d09c2ce729de135525f9465af2969df8b7b Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Sun, 4 May 2025 11:53:01 +0800 Subject: [PATCH] breakpoints & weight truncation --- main.tex | 55 ++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 54 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index e20adce..0b63e83 100644 --- a/main.tex +++ b/main.tex @@ -105,7 +105,7 @@ complexity: $\tilde{O}(m^2n^4/\epsilon)$. \begin{frame}{LP Method} \citep{vygen_fptas_2024} gives a strong framework but the intuition behind is vague. -\begin{equation} +\begin{equation}\label{IP} \begin{aligned} \min& & \sum_{e} x_e w(e) & & & &\\ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is a cut)}\\ @@ -116,6 +116,59 @@ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is \end{equation} \end{frame} + +\begin{frame}{Normalized Mincut from LP} +One standard trick for dealing LPs with knapsack constraints is to consider its Lagrangian dual. +\begin{equation*} +\max_{\mu\geq 0} L(\mu)= \max_{\mu\geq 0} \min \left\{ w(C-F)-\mu(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C +% \land c(F)\leq b +\right\} +\end{equation*} + +\begin{lemma} +$L(\mu)$ is piecewise linear and concave. +\end{lemma} + +For fixed $\mu$, how to solve $\min\limits_{C,F} \left\{ w(C-F)-\mu(b-c(F)) +\right\}$? + +For small enough $\mu\geq 0$, $w(C-F)$ term is dominanting. +Thus the optimal solution must be $C=F=\text{mincut with weight $c$}$. +\end{frame} + + +\begin{frame}{Breakpoints on $L(\mu)$} +We have see that the first line segment is $L(\mu)=(\lambda_c-b)\mu$ where $\lambda_c$ is the value of mincut with capacity $c$. + +What is the first breakpoint on $L(\mu)$? +\newline + +We have $-\mu(b-\lambda_c)\leq w(C- F)-\mu(b-c(F))$ for any cut $C$ and $F\subsetneq C$. Thus the first breakpoint is $\mu=\min \frac{w(C- F)}{\lambda_c-c(F)}$, which is the value of normalized mincut. +\newline + +What about other breakpoints? Currently I can only prove the following :( +\begin{lemma} +$\lambda_i=\min \frac{w(C- F)-w(C_{i-1}- F_{i-1})}{c(F_{i-1})-c(F)}$, where the minimum is taken over all cut $C$ and $F\subset C$ such that both the numerator and denominator are positive. +\end{lemma} +\end{frame} + + +\begin{frame}{Weight Truncation from LP} +Consider the dual of linear relaxation of ILP\ref{IP}. + +\begin{equation}\label{lp:dualcutint} +\begin{aligned} +\max& & \sum_T z_T &- b\mu & &\\ +s.t.& & \sum_{T\ni e} z_T &\leq w(e) & &\forall e\in E\\ + & & \sum_{T\ni e} z_T &\leq c(e)\mu & &\forall e \in E\\ + & & z_T,\mu &\geq 0 & & +\end{aligned} +\end{equation} + +Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\sum z_T \leq w(e)$ and $\sum z_T \leq c(e)\mu$ only one of them works. The real capacity for this fractional tree packing is $\min\{w(e),c(e)\mu\}$, which is exactly the truncated weight $w_\tau$. +\end{frame} + + \begin{frame}{References} \bibliographystyle{plainnat} \bibliography{ref}