Compare commits
2 Commits
66fde92bd0
...
3ae08afcb0
Author | SHA1 | Date | |
---|---|---|---|
3ae08afcb0 | |||
cecdc0660e |
30
main.tex
30
main.tex
@ -152,6 +152,36 @@ I believe the later method is more general and works for \nonuscut{}, while the
|
||||
\subsection{SDP $O(\sqrt{\log n})$ - \uscut{}}
|
||||
This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}.
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\min& & \frac{\sum_{ij\in E}c_{ij}(x_i-x_j)^2}{\sum_{ij\in V\times V}(x_i-x_j)^2}& & &\\
|
||||
s.t.& & (x_i-x_j)^2 + (x_j-x_k)^2&\geq (x_i-x_k)^2 & &\forall i,j,k\in V\\
|
||||
& & x_i&\in \{+1,-1\} & &\forall i \in V
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
This SDP models \uscut{} since every assignment of $x$ corresponds to a cut and the objective is the sparsity of the cut (up to a constant factor, but we don't care since we cannot achieve a constant factor approximation anyway). Now we consider a relaxation which is similar to \lp{}.
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\min& & \sum_{ij\in E}c_{ij}\|v_i-v_j\|^2& & &\\
|
||||
s.t.& & \sum_{ij\in V\times V}\|v_i-v_j\|^2&=1 & &\\
|
||||
& & \|v_i-v_j\|^2 + \|v_j-v_k\|^2&\geq \|v_i-v_k\|^2 & &\forall i,j,k\in V\\
|
||||
& & v_i&\in \R^n & &\forall i \in V
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get a cut $\delta(S)$ with $c(\delta(S))=|S| \opt(SDP) O(n\sqrt{\log n})$. If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we have
|
||||
|
||||
\[
|
||||
\frac{c(\delta(S))}{|S||V-S|}
|
||||
\leq n|S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}
|
||||
\leq |S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{n} O(\sqrt{\log n})
|
||||
\leq O(\sqrt{\log n}) \opt(SDP).
|
||||
\]
|
||||
|
||||
This is the framework of the proof in \cite{arora_expander_2004}.
|
||||
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{ref}
|
||||
\end{document}
|
||||
|
Loading…
x
Reference in New Issue
Block a user