fix wrong math
This commit is contained in:
parent
cecdc0660e
commit
3ae08afcb0
9
main.tex
9
main.tex
@ -171,14 +171,17 @@ s.t.& & \sum_{ij\in V\times V}\|v_i-v_j\|^2&=1 & &\\
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get integral $x$ with $O(\sqrt{\log n}) \opt(SDP)$ upperbound on the objective.
|
||||
To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get a cut $\delta(S)$ with $c(\delta(S))=|S| \opt(SDP) O(n\sqrt{\log n})$. If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we have
|
||||
|
||||
\[
|
||||
\frac{c(\delta(S))}{|S||V-S|}\leq \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}\leq ?
|
||||
\frac{c(\delta(S))}{|S||V-S|}
|
||||
\leq n|S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}
|
||||
\leq |S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{n} O(\sqrt{\log n})
|
||||
\leq O(\sqrt{\log n}) \opt(SDP).
|
||||
\]
|
||||
|
||||
This is the framework of the proof in \cite{arora_expander_2004}.
|
||||
|
||||
If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we can move
|
||||
\bibliographystyle{alpha}
|
||||
\bibliography{ref}
|
||||
\end{document}
|
||||
|
Loading…
x
Reference in New Issue
Block a user