diff --git a/main.pdf b/main.pdf index a41c1b1..f2674ec 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index 4c78528..47f9dda 100644 --- a/main.tex +++ b/main.tex @@ -171,14 +171,17 @@ s.t.& & \sum_{ij\in V\times V}\|v_i-v_j\|^2&=1 & &\\ \end{aligned} \end{equation*} -To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get integral $x$ with $O(\sqrt{\log n}) \opt(SDP)$ upperbound on the objective. +To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get a cut $\delta(S)$ with $c(\delta(S))=|S| \opt(SDP) O(n\sqrt{\log n})$. If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we have \[ -\frac{c(\delta(S))}{|S||V-S|}\leq \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}\leq ? +\frac{c(\delta(S))}{|S||V-S|} +\leq n|S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2} +\leq |S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{n} O(\sqrt{\log n}) +\leq O(\sqrt{\log n}) \opt(SDP). \] +This is the framework of the proof in \cite{arora_expander_2004}. -If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we can move \bibliographystyle{alpha} \bibliography{ref} \end{document}