Compare commits
	
		
			2 Commits
		
	
	
		
			66fde92bd0
			...
			3ae08afcb0
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 3ae08afcb0 | |||
| cecdc0660e | 
							
								
								
									
										30
									
								
								main.tex
									
									
									
									
									
								
							
							
						
						
									
										30
									
								
								main.tex
									
									
									
									
									
								
							@@ -152,6 +152,36 @@ I believe the later method is more general and works for \nonuscut{}, while the
 | 
				
			|||||||
\subsection{SDP $O(\sqrt{\log n})$ - \uscut{}}
 | 
					\subsection{SDP $O(\sqrt{\log n})$ - \uscut{}}
 | 
				
			||||||
This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}.
 | 
					This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{equation*}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\min&   &   \frac{\sum_{ij\in E}c_{ij}(x_i-x_j)^2}{\sum_{ij\in V\times V}(x_i-x_j)^2}&  &   &\\
 | 
				
			||||||
 | 
					s.t.&   &   (x_i-x_j)^2 + (x_j-x_k)^2&\geq (x_i-x_k)^2  &   &\forall i,j,k\in V\\
 | 
				
			||||||
 | 
					    &   &                   x_i&\in \{+1,-1\}   &   &\forall i \in V
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation*}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This SDP models \uscut{} since every assignment of $x$ corresponds to a cut and the objective is the sparsity of the cut (up to a constant factor, but we don't care since we cannot achieve a constant factor approximation anyway). Now we consider a relaxation which is similar to \lp{}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{equation*}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\min&   &   \sum_{ij\in E}c_{ij}\|v_i-v_j\|^2&  &   &\\
 | 
				
			||||||
 | 
					s.t.&   &                   \sum_{ij\in V\times V}\|v_i-v_j\|^2&=1  &   &\\
 | 
				
			||||||
 | 
					    &   &   \|v_i-v_j\|^2 + \|v_j-v_k\|^2&\geq \|v_i-v_k\|^2  &   &\forall i,j,k\in V\\
 | 
				
			||||||
 | 
					    &   &                   v_i&\in \R^n   &   &\forall i \in V
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation*}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get a cut $\delta(S)$ with $c(\delta(S))=|S| \opt(SDP) O(n\sqrt{\log n})$. If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we have
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\[
 | 
				
			||||||
 | 
					\frac{c(\delta(S))}{|S||V-S|}
 | 
				
			||||||
 | 
					\leq n|S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}
 | 
				
			||||||
 | 
					\leq |S| \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{n} O(\sqrt{\log n}) 
 | 
				
			||||||
 | 
					\leq O(\sqrt{\log n}) \opt(SDP).
 | 
				
			||||||
 | 
					\]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This is the framework of the proof in \cite{arora_expander_2004}.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\bibliographystyle{alpha}
 | 
					\bibliographystyle{alpha}
 | 
				
			||||||
\bibliography{ref}
 | 
					\bibliography{ref}
 | 
				
			||||||
\end{document}
 | 
					\end{document}
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user