commit for dinner
This commit is contained in:
parent
ac419b7e12
commit
9ccff75dea
6
main.tex
6
main.tex
@ -115,8 +115,12 @@ s.t.& & \sum_i D_i d(s_i,t_i)&=1 & &\\
|
|||||||
|
|
||||||
\newcommand{\lp}{LP\ref{LP}}
|
\newcommand{\lp}{LP\ref{LP}}
|
||||||
\newcommand{\ip}{IP\ref{IP}}
|
\newcommand{\ip}{IP\ref{IP}}
|
||||||
|
\newcommand{\dual}{LP\ref{dual}}
|
||||||
|
\newcommand{\metric}{LP\ref{metric}}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item \ip $\geq$ \lp. Given any feasible solution to \ip, we can
|
\item \ip{} $\geq$ \lp{}. Given any feasible solution to \ip{}, we can scale all $x_e$ and $y_i$ simultaneously with factor $1/\sum_i D_i y_i$. The scaled solution is feasible for \lp{} and gets the same objective value.
|
||||||
|
\item \lp{} $=$ \dual{}. by duality.
|
||||||
|
\item \metric{} $=$ \lp{}. It is easy to see \metric{} $\geq$ \lp{} since any feasible metric to \metric{} induces a feasible solution to \lp{}. In fact, any solution to \lp{} also induces a feasible metric.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\bibliographystyle{plainnat}
|
\bibliographystyle{plainnat}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user