diff --git a/main.pdf b/main.pdf index c4d0598..c254a54 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index 1d06154..9fb36aa 100644 --- a/main.tex +++ b/main.tex @@ -115,8 +115,12 @@ s.t.& & \sum_i D_i d(s_i,t_i)&=1 & &\\ \newcommand{\lp}{LP\ref{LP}} \newcommand{\ip}{IP\ref{IP}} +\newcommand{\dual}{LP\ref{dual}} +\newcommand{\metric}{LP\ref{metric}} \begin{enumerate} -\item \ip $\geq$ \lp. Given any feasible solution to \ip, we can +\item \ip{} $\geq$ \lp{}. Given any feasible solution to \ip{}, we can scale all $x_e$ and $y_i$ simultaneously with factor $1/\sum_i D_i y_i$. The scaled solution is feasible for \lp{} and gets the same objective value. +\item \lp{} $=$ \dual{}. by duality. +\item \metric{} $=$ \lp{}. It is easy to see \metric{} $\geq$ \lp{} since any feasible metric to \metric{} induces a feasible solution to \lp{}. In fact, any solution to \lp{} also induces a feasible metric. \end{enumerate} \bibliographystyle{plainnat}