almost positive covering

This commit is contained in:
Yu Cong 2025-04-10 17:46:34 +08:00
parent 26f919d0bd
commit c9f9042888
2 changed files with 14 additions and 0 deletions

BIN
main.pdf

Binary file not shown.

View File

@ -140,6 +140,20 @@ s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms
Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new $x$ is $x-y$) gives us the following,
\begin{equation*}
\begin{aligned}
\min& & \sum_{e} x_e w(e) & & \\
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
& & y_e,x_e&\in\{0,1\} & &\forall e
\end{aligned}
\end{equation*}
Note that now this is almost a positive covering LP.
\section{Random Stuff}
\subsection{remove box constraints}