almost positive covering
This commit is contained in:
parent
26f919d0bd
commit
c9f9042888
14
main.tex
14
main.tex
@ -140,6 +140,20 @@ s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms
|
||||
|
||||
Now this LP looks similar to the normalized min-cut problem.
|
||||
|
||||
A further reformulation (the new $x$ is $x-y$) gives us the following,
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\min& & \sum_{e} x_e w(e) & & \\
|
||||
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
||||
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
Note that now this is almost a positive covering LP.
|
||||
|
||||
\section{Random Stuff}
|
||||
|
||||
\subsection{remove box constraints}
|
||||
|
Loading…
x
Reference in New Issue
Block a user