...
This commit is contained in:
parent
951cc64d7b
commit
46771bae89
6
main.tex
6
main.tex
@ -131,7 +131,7 @@ How to derive normalized min cut for connectivity interdiction?
|
|||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\max& & z& & & \\
|
\max& & z& & & \\
|
||||||
s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||||
& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ is a cut)}\\
|
||||||
& & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\
|
& & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\
|
||||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
@ -143,7 +143,7 @@ we can assume that $y_e\leq x_e$.
|
|||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\min& & \sum_{e} (x_e&-y_e) w(e) & & \\
|
\min& & \sum_{e} (x_e&-y_e) w(e) & & \\
|
||||||
% s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\
|
% s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\
|
||||||
s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ is a cut)}\\
|
||||||
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||||
& & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
& & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||||
@ -157,7 +157,7 @@ A further reformulation (the new $x$ is $x-y$) gives us the following,
|
|||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\min& & \sum_{e} x_e w(e) & & \\
|
\min& & \sum_{e} x_e w(e) & & \\
|
||||||
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x+y$ is a cut)}\\
|
||||||
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||||
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||||
|
Loading…
x
Reference in New Issue
Block a user