diff --git a/main.pdf b/main.pdf index 10bb5bd..a0b0299 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index eaf0de5..3a887cf 100644 --- a/main.tex +++ b/main.tex @@ -131,7 +131,7 @@ How to derive normalized min cut for connectivity interdiction? \begin{aligned} \max& & z& & & \\ s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ -& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\ +& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ is a cut)}\\ & & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\ & & y_e,x_e&\in\{0,1\} & &\forall e \end{aligned} @@ -143,7 +143,7 @@ we can assume that $y_e\leq x_e$. \begin{aligned} \min& & \sum_{e} (x_e&-y_e) w(e) & & \\ % s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\ -s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\ +s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ is a cut)}\\ & & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\ & & y_e,x_e&\in\{0,1\} & &\forall e @@ -157,7 +157,7 @@ A further reformulation (the new $x$ is $x-y$) gives us the following, \begin{equation*} \begin{aligned} \min& & \sum_{e} x_e w(e) & & \\ -s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\ +s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x+y$ is a cut)}\\ & & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ % & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\ & & y_e,x_e&\in\{0,1\} & &\forall e