normalized min-cut -- Lagrangian dual
This commit is contained in:
parent
c9f9042888
commit
42a889e6ed
9
main.tex
9
main.tex
@ -152,7 +152,14 @@ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ fo
|
|||||||
\end{aligned}
|
\end{aligned}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
|
|
||||||
Note that now this is almost a positive covering LP.
|
Note that now this is almost a positive covering LP. Let $L(\lambda)= \min \{ w(C\setminus F)-\lambda(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C \land c(F)\leq b\}$ Consider the Lagrangian dual,
|
||||||
|
\begin{equation*}
|
||||||
|
\max_{\lambda\geq 0} L(\lambda)= \max_{\lambda\geq 0} \min \left\{ w(C\setminus F)-\lambda(b-c(F)), \forall \text{cut $C$}\;\forall F\subset C \land c(F)\leq b\right\}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
|
||||||
|
At this point, it becomes clear how the normalized min-cut is implicated in \cite{vygen_fptas_2024}. The optimum of normalized min-cut is exactly the value of $\lambda$ when $L(\lambda)$ is 0.
|
||||||
|
|
||||||
|
|
||||||
\section{Random Stuff}
|
\section{Random Stuff}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user