remove a conjecture

This commit is contained in:
Yu Cong 2025-04-22 13:51:34 +08:00
parent 1b05184804
commit 290e0ed4e5
2 changed files with 3 additions and 7 deletions

BIN
main.pdf

Binary file not shown.

View File

@ -178,7 +178,7 @@ A further reformulation (the new $x$ is $x-y$) gives us the following,
\begin{aligned}
\min& & \sum_{e} x_e w(e) & & \\
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x+y$ is a cut)}\\
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
& & \sum_{e} y_e c(e) &\leq b & &\text{(budget for $F$)}\\
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
& & y_e,x_e&\in\{0,1\} & &\forall e
\end{aligned}
@ -248,13 +248,9 @@ We want to prove something like tree packing theorem for \autoref{lp:dualcutint}
The optimum of \autoref{lp:dualcutint} is $\min \set{\frac{w(C\setminus F)}{B-c(F)}| \forall \text{cut $C$}, c(F)\leq b}$, where $B$ is the cost of mincut in $G$ and $b$ is the budget.
\end{conjecture}
I believe the previous conjecture is not likely to be true. This one seems better,
I believe the previous conjecture is not likely to be true.
\begin{conjecture}\label{conj:optimaldual}
$\lambda=\min \frac{w(C\setminus F)}{B-c(F)}$ is optimal for \autoref{lp:dualcutint}.
\end{conjecture}
Assuming \autoref{conj:optimaldual} is true, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$.
\paragraph{Weight truncation} Assuming we know the optimal $\lambda$ to the LP dual, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$.
\begin{conjecture}
\autoref{lp:cutinterdict} has an integrality gap of 2.