diff --git a/main.pdf b/main.pdf index 0146cc3..e68912d 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index 78dffc8..7f7cc4c 100644 --- a/main.tex +++ b/main.tex @@ -178,7 +178,7 @@ A further reformulation (the new $x$ is $x-y$) gives us the following, \begin{aligned} \min& & \sum_{e} x_e w(e) & & \\ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x+y$ is a cut)}\\ -& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ +& & \sum_{e} y_e c(e) &\leq b & &\text{(budget for $F$)}\\ % & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\ & & y_e,x_e&\in\{0,1\} & &\forall e \end{aligned} @@ -248,13 +248,9 @@ We want to prove something like tree packing theorem for \autoref{lp:dualcutint} The optimum of \autoref{lp:dualcutint} is $\min \set{\frac{w(C\setminus F)}{B-c(F)}| \forall \text{cut $C$}, c(F)\leq b}$, where $B$ is the cost of mincut in $G$ and $b$ is the budget. \end{conjecture} -I believe the previous conjecture is not likely to be true. This one seems better, +I believe the previous conjecture is not likely to be true. -\begin{conjecture}\label{conj:optimaldual} - $\lambda=\min \frac{w(C\setminus F)}{B-c(F)}$ is optimal for \autoref{lp:dualcutint}. -\end{conjecture} - -Assuming \autoref{conj:optimaldual} is true, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$. +\paragraph{Weight truncation} Assuming we know the optimal $\lambda$ to the LP dual, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$. \begin{conjecture} \autoref{lp:cutinterdict} has an integrality gap of 2.