seems good
This commit is contained in:
parent
c2eae7f62c
commit
26f919d0bd
24
main.tex
24
main.tex
@ -115,6 +115,30 @@ Authors of \cite{vygen_fptas_2024} $\subset$ authors of
|
||||
How to derive normalized min cut for connectivity interdiction?
|
||||
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\max& & z& & & \\
|
||||
s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||
& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
||||
& & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\
|
||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
we can assume that $y_e\leq x_e$.
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
\min& & \sum_{e} (x_e&-y_e) w(e) & & \\
|
||||
% s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\
|
||||
s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
|
||||
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
|
||||
& & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
Now this LP looks similar to the normalized min-cut problem.
|
||||
|
||||
\section{Random Stuff}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user