seems good

This commit is contained in:
Yu Cong 2025-04-10 17:14:35 +08:00
parent c2eae7f62c
commit 26f919d0bd
2 changed files with 24 additions and 0 deletions

BIN
main.pdf

Binary file not shown.

View File

@ -115,6 +115,30 @@ Authors of \cite{vygen_fptas_2024} $\subset$ authors of
How to derive normalized min cut for connectivity interdiction?
\begin{equation*}
\begin{aligned}
\max& & z& & & \\
s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
& & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\
& & y_e,x_e&\in\{0,1\} & &\forall e
\end{aligned}
\end{equation*}
we can assume that $y_e\leq x_e$.
\begin{equation*}
\begin{aligned}
\min& & \sum_{e} (x_e&-y_e) w(e) & & \\
% s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\
s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\
& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\
& & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
& & y_e,x_e&\in\{0,1\} & &\forall e
\end{aligned}
\end{equation*}
Now this LP looks similar to the normalized min-cut problem.
\section{Random Stuff}