diff --git a/main.pdf b/main.pdf index e78ca71..9e66617 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index 2a65e27..22dc1b4 100644 --- a/main.tex +++ b/main.tex @@ -115,6 +115,30 @@ Authors of \cite{vygen_fptas_2024} $\subset$ authors of How to derive normalized min cut for connectivity interdiction? +\begin{equation*} +\begin{aligned} +\max& & z& & & \\ +s.t.& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ +& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\ +& & \sum_{e} \min(0,x_e-y_e) w(e)&\geq z & &\\ +& & y_e,x_e&\in\{0,1\} & &\forall e +\end{aligned} +\end{equation*} + +we can assume that $y_e\leq x_e$. + +\begin{equation*} +\begin{aligned} +\min& & \sum_{e} (x_e&-y_e) w(e) & & \\ +% s.t.& & \sum_{e} (x_e-y_e) w(e)&\geq z & &\\ +s.t.& & \sum_{e\in T} x_e&\geq 1 & &\forall T\quad \text{($x$ forms a cut)}\\ +& & \sum_{e} y_e c(e) &\leq B & &\text{(budget for $F$)}\\ +& & x_e&\geq y_e & &\forall e\quad(F\subset C)\\ +& & y_e,x_e&\in\{0,1\} & &\forall e +\end{aligned} +\end{equation*} + +Now this LP looks similar to the normalized min-cut problem. \section{Random Stuff}