weight truncation!
This commit is contained in:
parent
d091f4a7dc
commit
1b05184804
8
main.tex
8
main.tex
@ -248,6 +248,14 @@ We want to prove something like tree packing theorem for \autoref{lp:dualcutint}
|
|||||||
The optimum of \autoref{lp:dualcutint} is $\min \set{\frac{w(C\setminus F)}{B-c(F)}| \forall \text{cut $C$}, c(F)\leq b}$, where $B$ is the cost of mincut in $G$ and $b$ is the budget.
|
The optimum of \autoref{lp:dualcutint} is $\min \set{\frac{w(C\setminus F)}{B-c(F)}| \forall \text{cut $C$}, c(F)\leq b}$, where $B$ is the cost of mincut in $G$ and $b$ is the budget.
|
||||||
\end{conjecture}
|
\end{conjecture}
|
||||||
|
|
||||||
|
I believe the previous conjecture is not likely to be true. This one seems better,
|
||||||
|
|
||||||
|
\begin{conjecture}\label{conj:optimaldual}
|
||||||
|
$\lambda=\min \frac{w(C\setminus F)}{B-c(F)}$ is optimal for \autoref{lp:dualcutint}.
|
||||||
|
\end{conjecture}
|
||||||
|
|
||||||
|
Assuming \autoref{conj:optimaldual} is true, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$.
|
||||||
|
|
||||||
\begin{conjecture}
|
\begin{conjecture}
|
||||||
\autoref{lp:cutinterdict} has an integrality gap of 2.
|
\autoref{lp:cutinterdict} has an integrality gap of 2.
|
||||||
\end{conjecture}
|
\end{conjecture}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user