diff --git a/main.pdf b/main.pdf index 64880ba..0146cc3 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index c9184f1..78dffc8 100644 --- a/main.tex +++ b/main.tex @@ -248,6 +248,14 @@ We want to prove something like tree packing theorem for \autoref{lp:dualcutint} The optimum of \autoref{lp:dualcutint} is $\min \set{\frac{w(C\setminus F)}{B-c(F)}| \forall \text{cut $C$}, c(F)\leq b}$, where $B$ is the cost of mincut in $G$ and $b$ is the budget. \end{conjecture} +I believe the previous conjecture is not likely to be true. This one seems better, + +\begin{conjecture}\label{conj:optimaldual} + $\lambda=\min \frac{w(C\setminus F)}{B-c(F)}$ is optimal for \autoref{lp:dualcutint}. +\end{conjecture} + +Assuming \autoref{conj:optimaldual} is true, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$. + \begin{conjecture} \autoref{lp:cutinterdict} has an integrality gap of 2. \end{conjecture}