Compare commits
8 Commits
edb9aaaa43
...
master
Author | SHA1 | Date | |
---|---|---|---|
def8b877ea | |||
db92cd3e1d | |||
3d3cecb204 | |||
951c5918f6 | |||
d9b4380c03 | |||
9e72f0106d | |||
fefb1bb18c | |||
9bf59bc7b4 |
@@ -1,5 +1,5 @@
|
|||||||
name: build pdf
|
name: build pdf
|
||||||
on: [push,watch]
|
on: push
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build:
|
build:
|
||||||
@@ -7,7 +7,7 @@ jobs:
|
|||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repository
|
- name: Check out the repository
|
||||||
uses: actions/checkout@v4
|
uses: http://localhost:3000/sxlxc/checkout@v4
|
||||||
|
|
||||||
- name: Compile LaTeX using local TeX Live
|
- name: Compile LaTeX using local TeX Live
|
||||||
# These commands run directly in your machine's shell
|
# These commands run directly in your machine's shell
|
||||||
@@ -18,7 +18,7 @@ jobs:
|
|||||||
- name: List files in the workspace
|
- name: List files in the workspace
|
||||||
run: ls -l
|
run: ls -l
|
||||||
|
|
||||||
- uses: akkuman/gitea-release-action@v1
|
- uses: http://localhost:3000/sxlxc/gitea-release-action@v1
|
||||||
with:
|
with:
|
||||||
body: ''
|
body: ''
|
||||||
prerelease: true
|
prerelease: true
|
||||||
|
@@ -1,2 +1,2 @@
|
|||||||
$pdflatex = 'xelatex %O %S';
|
$pdflatex = 'xelatex %O -interaction=nonstopmode %S';
|
||||||
$pdf_mode = 1;
|
$pdf_mode = 1;
|
61
main.tex
61
main.tex
@@ -1,4 +1,4 @@
|
|||||||
\documentclass[12pt]{article}
|
\documentclass[11pt]{article}
|
||||||
% \usepackage{chao}
|
% \usepackage{chao}
|
||||||
\usepackage[sans]{xenotes}
|
\usepackage[sans]{xenotes}
|
||||||
% \usepackage{natbib}
|
% \usepackage{natbib}
|
||||||
@@ -7,6 +7,8 @@
|
|||||||
\author{}
|
\author{}
|
||||||
\date{}
|
\date{}
|
||||||
|
|
||||||
|
\DeclareMathOperator*{\opt}{OPT}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\maketitle
|
\maketitle
|
||||||
% \tableofcontents
|
% \tableofcontents
|
||||||
@@ -14,6 +16,8 @@
|
|||||||
|
|
||||||
For errata and more stuff, see \url{https://sarielhp.org/book/}
|
For errata and more stuff, see \url{https://sarielhp.org/book/}
|
||||||
|
|
||||||
|
% Note that unless specifically stated, we always consider the RAM model.
|
||||||
|
|
||||||
\section{Grid}
|
\section{Grid}
|
||||||
\begin{exercise}\label{ex1.1}
|
\begin{exercise}\label{ex1.1}
|
||||||
Let $P$ be a max cardinality point set contained in the $d$-dimensional unit hypercube such that the smallest distance of point pairs in $P$ is 1. Prove that
|
Let $P$ be a max cardinality point set contained in the $d$-dimensional unit hypercube such that the smallest distance of point pairs in $P$ is 1. Prove that
|
||||||
@@ -37,8 +41,61 @@ The last line is greater than $(\sqrt{d}/5)^d$ for large enough $d$.
|
|||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{exercise}
|
\begin{exercise}
|
||||||
Compute clustering radius
|
Compute clustering radius.
|
||||||
|
Let $C$ and $P$ be two given set of points such that $k=|C|$ and $n=|P|$. Define the covering radius of $P$ by $C$ as $r=\max_{p\in P} \min_{c\in C} \norm{p-c}$.
|
||||||
|
\begin{enumerate}
|
||||||
|
\item find an $O(n+k\log n)$ expected time alg that outputs $\alpha$ such that $r \leq \alpha \leq 10r$.
|
||||||
|
\item for prescribed $\varepsilon>0$, find an $O(n+k\varepsilon^{-2}\log n)$ expected time alg that outputs $\alpha$ s.t. $\alpha<r<(1+\epsilon)\alpha$.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{exercise}
|
||||||
|
% a Las Vegas approximation...
|
||||||
|
We repeatedly build grid for $C$ with different side length and insert points in $P$ into the grid.
|
||||||
|
$\log n$ rebuilds, each takes $O(k)$ time. each insertion takes $O(1)$ for points in $P$...
|
||||||
|
|
||||||
|
but how can i get the approximation ?
|
||||||
|
|
||||||
|
\begin{exercise}
|
||||||
|
Given a set $P$ of $n$ points in the plane and
|
||||||
|
parameter $k$, present a (simple) randomized algorithm that computes, in expected $O(n(n/k))$
|
||||||
|
time, a circle $D$ that contains $k$ points of $P$ and $\mathrm{radius}(D) ≤2r_{\mathrm{opt}}(P,k)$.
|
||||||
\end{exercise}
|
\end{exercise}
|
||||||
|
|
||||||
|
\section*{Not in the book}
|
||||||
|
\begin{problem}[$d$-dimensional rectangle stabbing \cite{gaur_constant_2002}]
|
||||||
|
Given a set $R$ of $n$ axis-parallel rectangles and a set $\mathcal H$ of axis-parallel $d$ dimensional hyperplanes, find the minimum subset of $\mathcal H$ such that every rectangle is stabbed by at least one hyperplane in the subset.
|
||||||
|
\end{problem}
|
||||||
|
This problem is NP-hard even for the 2D case. There is a LP rounding method which gives a $d$-approximation for dimension $d$. Let $K_i\subset \mathcal H$ be the set of hyperplanes that are orthogonal to the $i$th axis. For a rectangle $r\in R$, denote by $K_i^r$ the set of hyperplanes in $K_i$ that stab $r$. Consider the following LP.
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \sum_{H\in \mathcal H} x_H& & & \\
|
||||||
|
s.t.& & \sum_{i\in [d]} \sum_{H \in K_i^r} x_H&\geq 1 & &\forall r\in R\\
|
||||||
|
& & x_H&\geq 0 & &\forall H\in \mathcal H
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
Let $\set{x^*_H: H\in \mathcal H}$ be the optimal solution to the above LP.
|
||||||
|
For each $r$, there must be some $i\in [d]$ such that $\sum_{H \in K_i^r}x^*_H \geq 1/d$. Denote such a set for rectangle $r$ by $K_*^r$.
|
||||||
|
Suppose that we find a subset $\mathcal H^{int}\subset \mathcal H$ and define a integral solution $\set{y_H=1}_{H\in \mathcal H^{int}}\cup \set{y_H=0}_{H\notin \mathcal H^{int}}$ such that $\sum_{H\in K_*^r}\geq 1$ for each rectangle $r$. In other words, we restrict the solution such that every rectangle $r$ is stabbed by hyperplanes in $K_*^r$.
|
||||||
|
|
||||||
|
One nice property of this restriction is that now the problem becomes independent for each dimension. We assign to each rectangle $r$ a dimension $i$ such that $\sum_{H \in K_i^r}x^*_H \geq 1/d$. This assignment indicates a partition $\set{R_i}_{i\in [d]}$ of $R$. We want to solve the following IP for dimension $i\in[d]$.
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
IP_i=\min& & \sum_{H\in K_i} x_H& & & \\
|
||||||
|
s.t.& & \sum_{H \in K_i^r} x_H&\geq 1 & &\forall r\in R_i\\
|
||||||
|
& & x_H&\in \set{0,1} & &\forall H\in K_i
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
Another nice property is that the constraint matrix is TUM since one can sort the hyperplanes in $K_i$ by their intersection with the $i$th axis and see that element $1$'s locate consecutively in each row in the constraint matrix. Hence, the linear relaxation of $IP_i$ (denoted by $LP_i$) is integral and we can solve $IP_i$ in polynomial time.
|
||||||
|
|
||||||
|
Now we show connections between $x^*$ and solutions of $IP_i$. Let $x^*|_{K_i}$ be the optimal solution to the rectangle stabbing LP restricted to hyperplanes in $K_i$.
|
||||||
|
We also have $\sum_{i\in [d]} \opt(IP_i)\leq d \sum_H x^*_H$ since $d x^*|_{K_i}$ is a feasible solution to $LP_i$. Then the $d$-integrality gap follows from the fact that the union of optimal solutions to $IP_i$ is a feasible solution to the rectangle stabbing problem.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\bibliographystyle{alpha}
|
||||||
|
\bibliography{ref}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
16
ref.bib
Normal file
16
ref.bib
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
|
||||||
|
@article{gaur_constant_2002,
|
||||||
|
title = {Constant {Ratio} {Approximation} {Algorithms} for the {Rectangle} {Stabbing} {Problem} and the {Rectilinear} {Partitioning} {Problem}},
|
||||||
|
volume = {43},
|
||||||
|
issn = {0196-6774},
|
||||||
|
url = {https://www.sciencedirect.com/science/article/pii/S0196677402912216},
|
||||||
|
doi = {10.1006/jagm.2002.1221},
|
||||||
|
number = {1},
|
||||||
|
urldate = {2025-08-16},
|
||||||
|
journal = {Journal of Algorithms},
|
||||||
|
author = {Gaur, Daya Ram and Ibaraki, Toshihide and Krishnamurti, Ramesh},
|
||||||
|
month = apr,
|
||||||
|
year = {2002},
|
||||||
|
keywords = {approximation algorithms, combinatorial optimization, rectangle stabbing, rectilinear partitioning},
|
||||||
|
pages = {138--152},
|
||||||
|
}
|
Reference in New Issue
Block a user