This commit is contained in:
2025-08-14 12:43:07 +08:00
parent edb9aaaa43
commit 9bf59bc7b4

View File

@@ -37,7 +37,12 @@ The last line is greater than $(\sqrt{d}/5)^d$ for large enough $d$.
\end{proof}
\begin{exercise}
Compute clustering radius
Compute clustering radius.
Let $C$ and $P$ be two given set of points such that $k=|C|$ and $n=|P|$. Define the covering radius of $P$ by $C$ as $r=\max_{p\in P} \min_{c\in C} \norm{p-c}$.
\begin{enumerate}
\item find an $O(n+k\log n)$ expected time alg that outputs $\alpha$ such that $\alpha \leq r \leq 10\alpha$.
\item for prescribed $\varepsilon>0$, find an $O(n+k\varepsilon^{-2}\log n)$ expected time alg that outputs $\alpha$ s.t. $\alpha<r<(1+\epsilon)\alpha$.
\end{enumerate}
\end{exercise}