ex1.2
This commit is contained in:
7
main.tex
7
main.tex
@@ -37,7 +37,12 @@ The last line is greater than $(\sqrt{d}/5)^d$ for large enough $d$.
|
||||
\end{proof}
|
||||
|
||||
\begin{exercise}
|
||||
Compute clustering radius
|
||||
Compute clustering radius.
|
||||
Let $C$ and $P$ be two given set of points such that $k=|C|$ and $n=|P|$. Define the covering radius of $P$ by $C$ as $r=\max_{p\in P} \min_{c\in C} \norm{p-c}$.
|
||||
\begin{enumerate}
|
||||
\item find an $O(n+k\log n)$ expected time alg that outputs $\alpha$ such that $\alpha \leq r \leq 10\alpha$.
|
||||
\item for prescribed $\varepsilon>0$, find an $O(n+k\varepsilon^{-2}\log n)$ expected time alg that outputs $\alpha$ s.t. $\alpha<r<(1+\epsilon)\alpha$.
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user