mirror of
https://github.com/congyu711/BeamerTheme.git
synced 2025-07-12 00:21:33 +08:00
update font and sty
This commit is contained in:
parent
cb6b15150b
commit
af55d61ae0
@ -1,12 +1,15 @@
|
|||||||
% !TEX program = xelatex
|
% !TEX program = xelatex
|
||||||
% !TEX TS-program = xelatex
|
% !TEX TS-program = xelatex
|
||||||
% fonts
|
% fonts
|
||||||
\RequirePackage[sfdefault]{FiraSans}
|
% \usefonttheme{professionalfonts}
|
||||||
|
% \RequirePackage[sfdefault]{FiraSans}
|
||||||
\RequirePackage{FiraMono}
|
\RequirePackage{FiraMono}
|
||||||
\renewcommand{\rmfamily}{\sffamily}
|
\renewcommand{\rmfamily}{\sffamily}
|
||||||
% \RequirePackage[fakebold]{firamath-otf}
|
% \RequirePackage[fakebold]{firamath-otf}
|
||||||
\usepackage[mathrm=sym]{unicode-math}
|
\RequirePackage{unicode-math}
|
||||||
\setmathfont{Fira Math}
|
\unimathsetup{math-style=ISO, bold-style=ISO, mathrm=sym}
|
||||||
|
\setsansfont{FiraGO}[BoldFont=* SemiBold, Numbers=Monospaced]
|
||||||
|
\setmathfont{Fira Math}[BoldFont=*-SemiBold]
|
||||||
\RequirePackage{xeCJK}
|
\RequirePackage{xeCJK}
|
||||||
\setCJKmainfont{Source Han Sans SC}
|
\setCJKmainfont{Source Han Sans SC}
|
||||||
|
|
||||||
@ -138,7 +141,7 @@
|
|||||||
\setbeamerfont{frametitle}{series=\bfseries\boldmath}
|
\setbeamerfont{frametitle}{series=\bfseries\boldmath}
|
||||||
\setbeamerfont{block title}{series=\bfseries\boldmath}
|
\setbeamerfont{block title}{series=\bfseries\boldmath}
|
||||||
\setbeamerfont{title}{series=\bfseries\boldmath}
|
\setbeamerfont{title}{series=\bfseries\boldmath}
|
||||||
\setbeamertemplate{frametitle}{\vskip2pt\hskip-6pt\underline{\insertframetitle}} % add line under frametitle
|
\setbeamertemplate{frametitle}{\vskip2pt\hskip-6pt\underbar{\insertframetitle}} % add line under frametitle
|
||||||
|
|
||||||
% theorem env
|
% theorem env
|
||||||
\setbeamertemplate{theorem begin}{%
|
\setbeamertemplate{theorem begin}{%
|
||||||
@ -167,8 +170,9 @@
|
|||||||
}
|
}
|
||||||
|
|
||||||
% more theorem env
|
% more theorem env
|
||||||
\newtheorem{observation}{Observation}
|
\newtheorem{conjecture}[theorem]{Conjecture}
|
||||||
\newtheorem{question}{Question}
|
\newtheorem{observation}[theorem]{Observation}
|
||||||
|
\newtheorem{question}[theorem]{Question}
|
||||||
|
|
||||||
|
|
||||||
% ----------------------------------------------------------------------
|
% ----------------------------------------------------------------------
|
||||||
|
27
main.tex
27
main.tex
@ -1,6 +1,6 @@
|
|||||||
\documentclass{beamer}
|
\documentclass{beamer}
|
||||||
|
|
||||||
\title[template example]{Minimizing the Sum of Piecewise Linear Convex Functions}
|
\title[template example]{Title}
|
||||||
\date{\today}
|
\date{\today}
|
||||||
\author{丛宇}
|
\author{丛宇}
|
||||||
% \AtBeginSection[]{
|
% \AtBeginSection[]{
|
||||||
@ -23,6 +23,7 @@
|
|||||||
|
|
||||||
\section{Problems \& Definitions}
|
\section{Problems \& Definitions}
|
||||||
\begin{frame}{$\min \sum f_i(a_i\cdot x-b_i)$}
|
\begin{frame}{$\min \sum f_i(a_i\cdot x-b_i)$}
|
||||||
|
$A\setminus B$ 测试中文:
|
||||||
\begin{problem}
|
\begin{problem}
|
||||||
Given $n$ piecewise linear convex functions $f_1,...,f_n:\R \to \R$ of total $m$ breakpoints, and $n$ linear functions $a_i\cdot x-b_i:\R^d\to \R$, find $\min_x \sum_i f_i(a_i\cdot x-b_i)$.
|
Given $n$ piecewise linear convex functions $f_1,...,f_n:\R \to \R$ of total $m$ breakpoints, and $n$ linear functions $a_i\cdot x-b_i:\R^d\to \R$, find $\min_x \sum_i f_i(a_i\cdot x-b_i)$.
|
||||||
\end{problem}
|
\end{problem}
|
||||||
@ -78,7 +79,7 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
Let $n_i$ be the number of line segments in $f_i$. Note that $\sum_i n_i=m+n$.
|
Let $n_i$ be the number of line segments in $f_i$. Note that $\sum_i n_i=m+n$.
|
||||||
|
|
||||||
We can formulate the optimization problem as the following linear program,
|
We can formulate the optimization problem as the following linear program,
|
||||||
\newpage
|
\framebreak
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\min &\sum_{i=1}^n f_i\\
|
\min &\sum_{i=1}^n f_i\\
|
||||||
@ -92,10 +93,8 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
|
|
||||||
\section{LP in Low Dimensions}
|
\section{LP in Low Dimensions}
|
||||||
\begin{frame}[allowframebreaks]{Megiddo's algorithm}%
|
\begin{frame}[allowframebreaks]{Megiddo's algorithm}%
|
||||||
\boxfill{
|
\url{https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf}
|
||||||
\tiny
|
|
||||||
\url{https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf}
|
|
||||||
}
|
|
||||||
The dimension $d$ (in our problem, the dimension of $x$) is small while the number of constraints are huge. We need only $d$ linearly independent tight constraints to identify the optimal solution $x^*$.
|
The dimension $d$ (in our problem, the dimension of $x$) is small while the number of constraints are huge. We need only $d$ linearly independent tight constraints to identify the optimal solution $x^*$.
|
||||||
Thus most of the constraints are useless.
|
Thus most of the constraints are useless.
|
||||||
|
|
||||||
@ -106,7 +105,7 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
Through inquiries. Let $a\cdot x \leq b$ be the constraint. Define 3 hyperplanes, $a\cdot x = c$ where $c\in \set{b,b-\e,b+\e}$. Now solve three $d-1$ dimension linear programming. The largest of the three objective functions tells us where $x^*$ lies with respect to the
|
Through inquiries. Let $a\cdot x \leq b$ be the constraint. Define 3 hyperplanes, $a\cdot x = c$ where $c\in \set{b,b-\e,b+\e}$. Now solve three $d-1$ dimension linear programming. The largest of the three objective functions tells us where $x^*$ lies with respect to the
|
||||||
hyperplane.
|
hyperplane.
|
||||||
|
|
||||||
\newpage
|
\framebreak
|
||||||
Finding the optimal solution $x^*$ is therefore equivalent to the following problem,
|
Finding the optimal solution $x^*$ is therefore equivalent to the following problem,
|
||||||
\begin{problem}[Multidimensional Search Problem]
|
\begin{problem}[Multidimensional Search Problem]
|
||||||
Suppose that there exists a point $x^*$ which is not known to us, but there is a oracle that can tell the position of $x^*$ relative to any hyperplane in $\R^d$. Given $n$ hyperplanes, we want to know the position of $x^*$ relative to each of them.
|
Suppose that there exists a point $x^*$ which is not known to us, but there is a oracle that can tell the position of $x^*$ relative to any hyperplane in $\R^d$. Given $n$ hyperplanes, we want to know the position of $x^*$ relative to each of them.
|
||||||
@ -114,7 +113,7 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
|
|
||||||
\textbf{What about 1 dimension search?} A fastest way will be using the linear time median algorithm. We can find the median of $n$ numbers and call the oracle to compare the median with $x^*$. Thus with $O(n)$ time median finding and one oracle call, we find the relative position of $n/2$ elements relative to $x^*$.
|
\textbf{What about 1 dimension search?} A fastest way will be using the linear time median algorithm. We can find the median of $n$ numbers and call the oracle to compare the median with $x^*$. Thus with $O(n)$ time median finding and one oracle call, we find the relative position of $n/2$ elements relative to $x^*$.
|
||||||
|
|
||||||
\newpage
|
\framebreak
|
||||||
|
|
||||||
If we can do similar things in $\R^d$, i.e., there is a method which makes $A(d)$ oracle calls and determines at least $B(d)$ fraction of relative positions, then we can apply this method $\log_{\frac{1}{1-B(d)}} n$ times to find all relative positions.
|
If we can do similar things in $\R^d$, i.e., there is a method which makes $A(d)$ oracle calls and determines at least $B(d)$ fraction of relative positions, then we can apply this method $\log_{\frac{1}{1-B(d)}} n$ times to find all relative positions.
|
||||||
|
|
||||||
@ -124,7 +123,7 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
\[T(n,d)=n(3T(n-1,d-1)+O(nd))\]
|
\[T(n,d)=n(3T(n-1,d-1)+O(nd))\]
|
||||||
Note that in this setting $A(d)=1$ and $B(d)=1/n$.
|
Note that in this setting $A(d)=1$ and $B(d)=1/n$.
|
||||||
|
|
||||||
\newpage
|
\framebreak
|
||||||
Megiddo designed a clever method where $A(d)=2^{d-1}$ and $B(d)=2^{-(2^d-1)}$.
|
Megiddo designed a clever method where $A(d)=2^{d-1}$ and $B(d)=2^{-(2^d-1)}$.
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
@ -133,7 +132,7 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
Given two lines through the origin with slopes of opposite sign, knowing which quadrant $x^*$ lies in allows us to locate it with respect to at least one of the lines.
|
Given two lines through the origin with slopes of opposite sign, knowing which quadrant $x^*$ lies in allows us to locate it with respect to at least one of the lines.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\newpage
|
\framebreak
|
||||||
Let $l_H$ be the intersection of hyperplane $H$ and $x_1x_2$ plane.
|
Let $l_H$ be the intersection of hyperplane $H$ and $x_1x_2$ plane.
|
||||||
Compute a partition $S_1\sqcup S_2=\mathcal H$.
|
Compute a partition $S_1\sqcup S_2=\mathcal H$.
|
||||||
$H\in S_1$ iff $l_H$ has positive slope. Otherwise $l_H\in S_2$. We further assume that $|S_1|=|S_2|=n/2$.
|
$H\in S_1$ iff $l_H$ has positive slope. Otherwise $l_H\in S_2$. We further assume that $|S_1|=|S_2|=n/2$.
|
||||||
@ -148,12 +147,8 @@ However, observe that in our problem the piecewise linear convex function is not
|
|||||||
Now we have $n/2$ pairs $(H_1,H_2)$, where $H_i\in S_i$. Let $l_i$ be the intersection of $H_i$ and $x_1x_2$ plane.
|
Now we have $n/2$ pairs $(H_1,H_2)$, where $H_i\in S_i$. Let $l_i$ be the intersection of $H_i$ and $x_1x_2$ plane.
|
||||||
Let $H_{x_i}$ be the linear combination of $H_1$ and $H_2$ s.t. $x_i$ is eliminated.
|
Let $H_{x_i}$ be the linear combination of $H_1$ and $H_2$ s.t. $x_i$ is eliminated.
|
||||||
\end{minipage}
|
\end{minipage}
|
||||||
|
By the previous lemma, calling oracle on $l_{x_1}$ and $l_{x_2}$ locate $x^*$ with respect to at least one of $H_1$ and $H_2$.
|
||||||
{
|
\framebreak
|
||||||
% Now we have $n/2$ pairs $(H_1,H_2)$, where $H_i\in S_i$. Let $l_i$ be the intersection of $H_i$ and $x_1x_2$ plane.
|
|
||||||
% Let $H_{x_i}$ be the linear combination of $H_1$ and $H_2$ s.t. $x_i$ is eliminated.
|
|
||||||
By the previous lemma, calling oracle on $l_{x_1}$ and $l_{x_2}$ locate $x^*$ with respect to at least one of $H_1$ and $H_2$.}
|
|
||||||
\newpage
|
|
||||||
Input: $S_1,S_2$ and the pairs.
|
Input: $S_1,S_2$ and the pairs.
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item recursively locate $x^*$ respect to $B(d-1)n/2$ hyperplanes($H_{x_i}$) with $A(d-1)$ oracle calls in $S_1$.
|
\item recursively locate $x^*$ respect to $B(d-1)n/2$ hyperplanes($H_{x_i}$) with $A(d-1)$ oracle calls in $S_1$.
|
||||||
|
11
readme.md
Normal file
11
readme.md
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
To use this theme:
|
||||||
|
|
||||||
|
1. install fonts. [FiraGO](https://github.com/bBoxType/FiraGO), [firamath](https://github.com/firamath/firamath)(build from source) and [Source Han Sans SC](https://github.com/adobe-fonts/source-han-sans/releases).
|
||||||
|
2. use xelatex. `.latexmkrc` generated by chatgpt
|
||||||
|
```latexmk
|
||||||
|
$pdf_mode = 1;
|
||||||
|
$latex = 'xelatex %O %S';
|
||||||
|
$pdflatex = 'xelatex %O %S';
|
||||||
|
$dvi_mode = 0;
|
||||||
|
$postscript_mode = 0;
|
||||||
|
```
|
Loading…
x
Reference in New Issue
Block a user