diff --git a/beamerthemeSimple.sty b/beamerthemeSimple.sty index 728ace4..9612291 100644 --- a/beamerthemeSimple.sty +++ b/beamerthemeSimple.sty @@ -1,12 +1,15 @@ % !TEX program = xelatex % !TEX TS-program = xelatex % fonts -\RequirePackage[sfdefault]{FiraSans} +% \usefonttheme{professionalfonts} +% \RequirePackage[sfdefault]{FiraSans} \RequirePackage{FiraMono} \renewcommand{\rmfamily}{\sffamily} % \RequirePackage[fakebold]{firamath-otf} -\usepackage[mathrm=sym]{unicode-math} -\setmathfont{Fira Math} +\RequirePackage{unicode-math} +\unimathsetup{math-style=ISO, bold-style=ISO, mathrm=sym} +\setsansfont{FiraGO}[BoldFont=* SemiBold, Numbers=Monospaced] +\setmathfont{Fira Math}[BoldFont=*-SemiBold] \RequirePackage{xeCJK} \setCJKmainfont{Source Han Sans SC} @@ -138,7 +141,7 @@ \setbeamerfont{frametitle}{series=\bfseries\boldmath} \setbeamerfont{block title}{series=\bfseries\boldmath} \setbeamerfont{title}{series=\bfseries\boldmath} -\setbeamertemplate{frametitle}{\vskip2pt\hskip-6pt\underline{\insertframetitle}} % add line under frametitle +\setbeamertemplate{frametitle}{\vskip2pt\hskip-6pt\underbar{\insertframetitle}} % add line under frametitle % theorem env \setbeamertemplate{theorem begin}{% @@ -167,8 +170,9 @@ } % more theorem env -\newtheorem{observation}{Observation} -\newtheorem{question}{Question} +\newtheorem{conjecture}[theorem]{Conjecture} +\newtheorem{observation}[theorem]{Observation} +\newtheorem{question}[theorem]{Question} % ---------------------------------------------------------------------- diff --git a/main.pdf b/main.pdf index 179366c..0c98ad7 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index 5fbebe0..9bedc3e 100644 --- a/main.tex +++ b/main.tex @@ -1,6 +1,6 @@ \documentclass{beamer} -\title[template example]{Minimizing the Sum of Piecewise Linear Convex Functions} +\title[template example]{Title} \date{\today} \author{丛宇} % \AtBeginSection[]{ @@ -23,6 +23,7 @@ \section{Problems \& Definitions} \begin{frame}{$\min \sum f_i(a_i\cdot x-b_i)$} + $A\setminus B$ 测试中文: \begin{problem} Given $n$ piecewise linear convex functions $f_1,...,f_n:\R \to \R$ of total $m$ breakpoints, and $n$ linear functions $a_i\cdot x-b_i:\R^d\to \R$, find $\min_x \sum_i f_i(a_i\cdot x-b_i)$. \end{problem} @@ -78,7 +79,7 @@ However, observe that in our problem the piecewise linear convex function is not Let $n_i$ be the number of line segments in $f_i$. Note that $\sum_i n_i=m+n$. We can formulate the optimization problem as the following linear program, - \newpage + \framebreak \begin{align*} \min &\sum_{i=1}^n f_i\\ @@ -92,10 +93,8 @@ However, observe that in our problem the piecewise linear convex function is not \section{LP in Low Dimensions} \begin{frame}[allowframebreaks]{Megiddo's algorithm}% - \boxfill{ - \tiny - \url{https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf} - } + \url{https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf} + The dimension $d$ (in our problem, the dimension of $x$) is small while the number of constraints are huge. We need only $d$ linearly independent tight constraints to identify the optimal solution $x^*$. Thus most of the constraints are useless. @@ -106,7 +105,7 @@ However, observe that in our problem the piecewise linear convex function is not Through inquiries. Let $a\cdot x \leq b$ be the constraint. Define 3 hyperplanes, $a\cdot x = c$ where $c\in \set{b,b-\e,b+\e}$. Now solve three $d-1$ dimension linear programming. The largest of the three objective functions tells us where $x^*$ lies with respect to the hyperplane. - \newpage + \framebreak Finding the optimal solution $x^*$ is therefore equivalent to the following problem, \begin{problem}[Multidimensional Search Problem] Suppose that there exists a point $x^*$ which is not known to us, but there is a oracle that can tell the position of $x^*$ relative to any hyperplane in $\R^d$. Given $n$ hyperplanes, we want to know the position of $x^*$ relative to each of them. @@ -114,7 +113,7 @@ However, observe that in our problem the piecewise linear convex function is not \textbf{What about 1 dimension search?} A fastest way will be using the linear time median algorithm. We can find the median of $n$ numbers and call the oracle to compare the median with $x^*$. Thus with $O(n)$ time median finding and one oracle call, we find the relative position of $n/2$ elements relative to $x^*$. - \newpage + \framebreak If we can do similar things in $\R^d$, i.e., there is a method which makes $A(d)$ oracle calls and determines at least $B(d)$ fraction of relative positions, then we can apply this method $\log_{\frac{1}{1-B(d)}} n$ times to find all relative positions. @@ -124,7 +123,7 @@ However, observe that in our problem the piecewise linear convex function is not \[T(n,d)=n(3T(n-1,d-1)+O(nd))\] Note that in this setting $A(d)=1$ and $B(d)=1/n$. - \newpage + \framebreak Megiddo designed a clever method where $A(d)=2^{d-1}$ and $B(d)=2^{-(2^d-1)}$. \begin{lemma} @@ -133,7 +132,7 @@ However, observe that in our problem the piecewise linear convex function is not \end{figure} Given two lines through the origin with slopes of opposite sign, knowing which quadrant $x^*$ lies in allows us to locate it with respect to at least one of the lines. \end{lemma} - \newpage + \framebreak Let $l_H$ be the intersection of hyperplane $H$ and $x_1x_2$ plane. Compute a partition $S_1\sqcup S_2=\mathcal H$. $H\in S_1$ iff $l_H$ has positive slope. Otherwise $l_H\in S_2$. We further assume that $|S_1|=|S_2|=n/2$. @@ -148,12 +147,8 @@ However, observe that in our problem the piecewise linear convex function is not Now we have $n/2$ pairs $(H_1,H_2)$, where $H_i\in S_i$. Let $l_i$ be the intersection of $H_i$ and $x_1x_2$ plane. Let $H_{x_i}$ be the linear combination of $H_1$ and $H_2$ s.t. $x_i$ is eliminated. \end{minipage} - - { - % Now we have $n/2$ pairs $(H_1,H_2)$, where $H_i\in S_i$. Let $l_i$ be the intersection of $H_i$ and $x_1x_2$ plane. - % Let $H_{x_i}$ be the linear combination of $H_1$ and $H_2$ s.t. $x_i$ is eliminated. - By the previous lemma, calling oracle on $l_{x_1}$ and $l_{x_2}$ locate $x^*$ with respect to at least one of $H_1$ and $H_2$.} - \newpage + By the previous lemma, calling oracle on $l_{x_1}$ and $l_{x_2}$ locate $x^*$ with respect to at least one of $H_1$ and $H_2$. + \framebreak Input: $S_1,S_2$ and the pairs. \begin{enumerate} \item recursively locate $x^*$ respect to $B(d-1)n/2$ hyperplanes($H_{x_i}$) with $A(d-1)$ oracle calls in $S_1$. diff --git a/readme.md b/readme.md new file mode 100644 index 0000000..89ed742 --- /dev/null +++ b/readme.md @@ -0,0 +1,11 @@ +To use this theme: + +1. install fonts. [FiraGO](https://github.com/bBoxType/FiraGO), [firamath](https://github.com/firamath/firamath)(build from source) and [Source Han Sans SC](https://github.com/adobe-fonts/source-han-sans/releases). +2. use xelatex. `.latexmkrc` generated by chatgpt +```latexmk +$pdf_mode = 1; +$latex = 'xelatex %O %S'; +$pdflatex = 'xelatex %O %S'; +$dvi_mode = 0; +$postscript_mode = 0; +``` \ No newline at end of file