counterexample for gap conj

This commit is contained in:
Yu Cong 2025-05-07 13:52:14 +08:00
parent bda1742877
commit 072107ce84
2 changed files with 23 additions and 0 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 176 KiB

After

Width:  |  Height:  |  Size: 173 KiB

View File

@ -188,8 +188,31 @@ Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}.
\newline
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
\newline
However, computational experiments show that the integrality gap of IP\ref{IP} is not a constant.
\end{frame}
\begin{frame}{Counterexample}
Consider a cycle $C_n$ of $n$ vertices with two special edges $e_1,e_2$. Let $L$ be a large number.
\[
w(e)=\begin{cases}
1 & e=e_1\\
L & e=e_2\\
2 & \text{else}
\end{cases},\quad
c(e)=\begin{cases}
L & e=e_1\\
1 & \text{else}
\end{cases}, \quad b=2-\epsilon
\]
For IP, it is clear that $F=\{e_2\}, C\setminus F=\{e_1\}$ and the optimum is 1\newline
For LP, we assign $x=0$ and $y_e=\frac{1}{n-2}$ for every edge except $e_1$. The optimum is 0.
\end{frame}
\begin{frame}{Gaps}
\vspace{-22pt}
\begin{figure}