diff --git a/images/gaps.png b/images/gaps.png index 9cc0f1d..7463d5f 100644 Binary files a/images/gaps.png and b/images/gaps.png differ diff --git a/main.tex b/main.tex index bf5c0cc..038996f 100644 --- a/main.tex +++ b/main.tex @@ -188,8 +188,31 @@ Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. \newline Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}. +\newline + +However, computational experiments show that the integrality gap of IP\ref{IP} is not a constant. \end{frame} + +\begin{frame}{Counterexample} +Consider a cycle $C_n$ of $n$ vertices with two special edges $e_1,e_2$. Let $L$ be a large number. +\[ +w(e)=\begin{cases} + 1 & e=e_1\\ + L & e=e_2\\ + 2 & \text{else} +\end{cases},\quad +c(e)=\begin{cases} + L & e=e_1\\ + 1 & \text{else} +\end{cases}, \quad b=2-\epsilon +\] + +For IP, it is clear that $F=\{e_2\}, C\setminus F=\{e_1\}$ and the optimum is 1\newline +For LP, we assign $x=0$ and $y_e=\frac{1}{n-2}$ for every edge except $e_1$. The optimum is 0. +\end{frame} + + \begin{frame}{Gaps} \vspace{-22pt} \begin{figure}