counterexample for gap conj
This commit is contained in:
parent
bda1742877
commit
072107ce84
BIN
images/gaps.png
BIN
images/gaps.png
Binary file not shown.
Before Width: | Height: | Size: 176 KiB After Width: | Height: | Size: 173 KiB |
23
main.tex
23
main.tex
@ -188,8 +188,31 @@ Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}.
|
|||||||
\newline
|
\newline
|
||||||
|
|
||||||
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
|
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
|
||||||
|
\newline
|
||||||
|
|
||||||
|
However, computational experiments show that the integrality gap of IP\ref{IP} is not a constant.
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Counterexample}
|
||||||
|
Consider a cycle $C_n$ of $n$ vertices with two special edges $e_1,e_2$. Let $L$ be a large number.
|
||||||
|
\[
|
||||||
|
w(e)=\begin{cases}
|
||||||
|
1 & e=e_1\\
|
||||||
|
L & e=e_2\\
|
||||||
|
2 & \text{else}
|
||||||
|
\end{cases},\quad
|
||||||
|
c(e)=\begin{cases}
|
||||||
|
L & e=e_1\\
|
||||||
|
1 & \text{else}
|
||||||
|
\end{cases}, \quad b=2-\epsilon
|
||||||
|
\]
|
||||||
|
|
||||||
|
For IP, it is clear that $F=\{e_2\}, C\setminus F=\{e_1\}$ and the optimum is 1\newline
|
||||||
|
For LP, we assign $x=0$ and $y_e=\frac{1}{n-2}$ for every edge except $e_1$. The optimum is 0.
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\begin{frame}{Gaps}
|
\begin{frame}{Gaps}
|
||||||
\vspace{-22pt}
|
\vspace{-22pt}
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user