
Sparsest Cut

1 Introduction
SPARSEST CUT is a fundamental problem in graph algorithms with connections to various cut related
problems.

Problem 1 (NON-UNIFORM SPARSEST CUT) The input is a graph G = (V, E) with edge capacities c : E→
R+ and a set of vertex pairs {s1, t1}, . . . , {sk, tk} along with demand values D1, . . . , Dk ∈ R+. The goal is to
find a cut δ(S) of G such that c(δ(S))

∑

i:|S∩{si ,ti}|=1 Di
is minimized.

In other words, NON-UNIFORM SPARSEST CUT finds the cut that minimizes its capacity divided by
the sum of demands of the vertex pairs it separates. There are two important varients of NON-UNIFORM

SPARSEST CUT. Note that we always consider unordered pair {si , t i}, i.e., we do not distinguish {si , t i}
and {t i , si}.

SPARSEST CUT is the uniform version of NON-UNIFORM SPARSEST CUT. The demand is 1 for every
possible vertex pair {si , t i}. In this case, we can remove from the input the pairs and demands. The goal
becomes to minimize c(δ(S))

|S||V\S| .

EXPANSION further simplifies the objective of SPARSEST CUT to min|S|≤n/2
c(δ(S))
|S| .

These problems are interesting since they are related to central concepts in graph theory and help to
design algorithms for hard problems on graph. One connections is expander graphs. The importance
of expander graphs is thoroughly surveyed in [HLW06]. The optimum of EXPANSION is also known as
Cheeger constant or conductance of a graph. SPARSEST CUT provides a 2-approximation of Cheeger
constant, which is especially important in the context of expander graphs as it is a way to measure
the edge expansion of a graph. NON-UNIFORM SPARSEST CUT is related to other cut problems such as
Multicut and Balanced Separator. From a more mathematical perspective, the techniques developed for
approximating SPARSEST CUT are deeply related to metric embedding, which is another fundamental
problem in geometry. Besides theoretical interests, SPARSEST CUT is useful in practical scenarios such as
in image segmentation and in some machine leaning algorithms.

1.1 related works

NON-UNIFORM SPARSEST CUT is APX-hard [CK09] and, assuming the Unique Game Conjecture, has
no polynomial time constant factor aproximation algorithm[CKK+05]. SPARSEST CUT admits no PTAS
[AMS07], assuming a widely believed conjecture. The currently best approximation algorithm for
SPARSEST CUT has ratio O(

p

log n) and running time Õ(n2) [AHK10]. Prior to this currently optimal
result, there is a long line of research optimizing both the approximation ratio and the complexity, see
[ARV04, LR99]. There are also works concerning approximating SPARSEST CUT on special graph classes
such as planar graphs [LS10], graphs with low treewidth [CKR10, GTW13, CKM+24].

For an overview of the LP methods for SPARSEST CUT, see https://courses.grainger.illinois.edu/
cs598csc/fa2024/Notes/lec-sparsest-cut.pdf.

The seminal work of [LR99] starts this line of research. They studied multicommodity flow problem
and proved a O(log n) flow-cut gap (in fact the tight Θ(log n) gap was proven by [AR95] and [LLR95]).
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They also developed O(log n) approximation algorithm for multicommodity flow problems, which can
imply O(log n) approximation for SPARSEST CUT and O(log2 n) approximation for NON-UNIFORM SPARS-
EST CUT. The technique is called region growing. They also discovered a lowerbound of Ω(log n) via
expanders. Note that any algorithm achieving the O(log n) flow cut gap implies an O(log2 n) approxima-
tion for NON-UNIFORM SPARSEST CUT, but better ratio is still possible through other methods. This paper
showed that O(log2 n) is the best approximation we can achieve using flow-cut gap.

For NON-UNIFORM SPARSEST CUT [LR99] only guarantees a O(log2 n) approximation. This is further
improved by [LLR95] and [AR98]. [AR98] applied metric embedding to NON-UNIFORM SPARSEST CUT

and obtained a O(log n) approximation. The connections between metric embedding and NON-UNIFORM

SPARSEST CUT is influential. NON-UNIFORM SPARSEST CUT can be formulated as an integer program.
[AR98], [AR95] and [LLR95] considered the metric relaxation of the IP. They observed that NON-UNIFORM

SPARSEST CUT is polynomial time solvable for trees and more generally for all ℓ1 metrics. The O(log n)
approximation follows from the O(log n) distortion in the metric embedding theorem.
[ARV04] and [AHK10] further improved the approximation ratio for SPARSEST CUT to O(

p

log n) via
semidefinite relaxation. This is currently the best approximation ratio for SPARSEST CUT.

There is also plenty of research concerning SPARSEST CUT on some graph classes, for example
[BBPP12]. One of the most popular class is graphs with constant treewidth. [CKM+24] gave a O(k2) ap-
proximation algorithm with complexity 2O(k) poly(n). [CAMV24] obtained a 2-approximation algorithm
for sparsest cut in treewidth k graph with running time 22O(k)

poly(n).
SPARSEST CUT is easy on trees and the flow-cut gap is 1 for trees. One explaination1 is that shortest

path distance in trees is an ℓ1 metric. There are works concerning planar graphs and more generally
graphs with constant genus. [LR99] provided a Ω(log n) lowerbound for flow-cut gap for SPARSEST CUT.
However, it is conjectured that the gap is O(1), while currently the best upperbound is still O(

p

log n)
[Rao99]. For graphs with constant genus, [LS10] gives a O(

p

log g) approximation for SPARSEST CUT,
where g is the genus of the input graph. For flow-cut gap in planar graphs the techniques are mainly
related to metric embedding theory2.

2 Approximations
Techniques for approximating uniform SPARSEST CUT and NON-UNIFORM SPARSEST CUT.

2.1 LP Θ(log n)

min

∑

e ce xe
∑

i Di yi

s.t.
∑

e∈p

xe ≥ yi ∀p ∈ Psi ,t i
,∀i

xe, yi ∈ {0, 1}

(1)

min
∑

e

ce xe

s.t.
∑

i

Di yi = 1

∑

e∈p

xe ≥ yi ∀p ∈ Psi ,t i
,∀i

xe, yi > 0

(2)

1https://courses.grainger.illinois.edu/cs598csc/fa2024/Notes/lec-sparsest-cut.pdf
2https://home.ttic.edu/~harry/teaching/teaching.html
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max λ

s.t.
∑

p∈Psi ,ti

yp ≥ λDi ∀i

∑

i

∑

p∈Psi ,ti
,p∋e

yp ≥ ce ∀e

yp ≥ 0

(3)

min
∑

uv∈E

cuvd(u, v)

s.t.
∑

i

Did(si , t i) = 1

d is a metric on V

(4)

1. IP1 ≥ LP2. Given any feasible solution to IP1, we can scale all xe and yi simultaneously with
factor 1/
∑

i Di yi . The scaled solution is feasible for LP2 and gets the same objective value.

2. LP2 = LP3. by duality.

3. LP4 = LP2. It is easy to see LP4 ≥ LP2 since any feasible metric to LP4 induces a feasible solution
to LP2. In fact, the optimal solution to LP2 also induces a feasible metric. Consider a solution
xe, yi to LP2. Let dx be the shortest path metric on V using edge length xe. It suffices to show that
yi = dx(si , t i). This can be seen from a reformulation of LP2. The constraint

∑

i Di yi = 1 can be
removed and the objective becomes

∑

e ce xe/
∑

i Di yi. This reformulation does not change the
optimal solution. Now suppose in the optimal solution to LP2 there is some yi which is strictly
smaller than dx(si , t i). Then the denominator

∑

i Di yi in the objective of our reformulation can be
larger, contradicting to the optimality of solution xe, yi .

Theorem 2.1 (Japanese Theorem) D is a demand matrix. D is routable in G iff∀l : E→ R+,
∑

e ce l(e)≥
∑

uv D(u, v)dl(u, v), where dl(s, t) is the short path distance induced by l(e).

Note that D is routable iff the optimum of the LPs is at least 1. Then the theorem follows directly from
LP4.

Θ(log n) flow-cut gap The flow-cut gap is OPT(IP1)/OPT(LP2) [LR99].
Suppose that G satisfies the cut condition, that is, c(δ(S)) is at least the demand separated by δ(S)

for all S ⊆ V . This implies OPT(IP1)≥ 1 and in this case the largest integrality gap is 1/OPT(LP2).
For 1 and 2-commodity flow problem the gap is 1 [FF56, Hu63]. However, for k ≥ 3 the gap becomes

larger3. It is mentioned in [LR99] that [Sch90] proved if the demand graph does not contain either
three disjoint edges or a triangle and a disjoint edge, then the gap is 1.

For the Ω(log n) lowerbound consider an uniform SPARSEST CUT instance on some 3-regular graph G
with unit capacity. In [LR99] they further required that for any S ⊆ V and small constant c, |δ(S)| ≥
c min(|S|, |S̄|). Then the value of the sparsest cut is at least c

n−1 . Observe that for any fixed vertex
v, there are at most n/2 vertices within distance log n− 3 of v. Thus at least half of the

�n
2

�

demand
pairs are connected with shortest path of length at least log n − 2. To sustain a flow f we need at
least 1

2

�n
2

�

(log n − 2) f ≤ 3n/2. Any feasible flow satisfies f ≤ 3n
(n2)(log n−2)

and the gap is therefore

Ω(log n). For the upperbound it suffices to show there exists a cut of ratio O( f log n). [LR99] gave
an algorithmic proof based on LP4. This can also be proven using metric embedding theorem, see
https://courses.grainger.illinois.edu/cs598csc/fa2024/Notes/lec-sparsest-cut.pdf. (I believe the later
method is more general and works for NON-UNIFORM SPARSEST CUT, while the former method is limited
to uniform SPARSEST CUT. However, the proof in [LR99] may have connections with the proof of
Bourgain’s thm? why does the method in [LR99] fail to work on NON-UNIFORM SPARSEST CUT?)

2.2 SDP O(
p

log n)

SDP approximation follows from metric embedding results.

3https://en.wikipedia.org/wiki/Approximate_max-flow_min-cut_theorem
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