
Sparsest Cut

1 Introduction
SPARSEST CUT is a fundamental problem in graph algorithms with connections to various cut related
problems.

Problem 1 (NON-UNIFORM SPARSEST CUT) The input is a graph G = (V, E) with edge capacities c : E→
R+ and a set of vertex pairs {s1, t1}, . . . , {sk, tk} along with demand values D1, . . . , Dk ∈ R+. The goal is to
find a cut δ(S) of G such that c(δ(S))

∑

i:|S∩{si ,ti}|=1 Di
is minimized.

In other words, NON-UNIFORM SPARSEST CUT finds the cut that minimizes its capacity divided by
the sum of demands of the vertex pairs it separates. There are two important varients of NON-UNIFORM

SPARSEST CUT. Note that we always consider unordered pair {si , t i}, i.e., we do not distinguish {si , t i}
and {t i , si}.

SPARSEST CUT is the uniform version of NON-UNIFORM SPARSEST CUT. The demand is 1 for every
possible vertex pair {si , t i}. In this case, we can remove from the input the pairs and demands. The goal
becomes to minimize c(δ(S))

|S||V\S| .

EXPANSION further simplifies the objective of SPARSEST CUT to min|S|≤n/2
c(δ(S))
|S| .

1.1 importance and connections

These problems are interesting since they are related to central concepts in graph theory and help to
design algorithms for hard problems on graph. One connections is expander graphs. The importance of
expander graphs is thoroughly surveyed in [Hoory et al., 2006]. The optimum of EXPANSION is also known
as Cheeger constant or conductance of a graph. SPARSEST CUT provides a 2-approximation of Cheeger
constant, which is especially important in the context of expander graphs as it is a way to measure
the edge expansion of a graph. NON-UNIFORM SPARSEST CUT is related to other cut problems such as
Multicut and Balanced Separator. From a more mathematical perspective, the techniques developed for
approximating SPARSEST CUT are deeply related to metric embedding, which is another fundamental
problem in geometry. Besides theoretical interests, SPARSEST CUT is useful in practical scenarios such as
in image segmentation and in some machine leaning algorithms.

1.2 related works

NON-UNIFORM SPARSEST CUT is APX-hard [Chuzhoy and Khanna, 2009] and, assuming the Unique
Game Conjecture, has no polynomial time constant factor aproximation algorithm[Chawla et al., 2005].
SPARSEST CUT admits no PTAS [Ambuhl et al., 2007], assuming a widely believed conjecture. The
currently best approximation algorithm has ratio O(

p

log n) and running time Õ(n2) [Arora et al., 2010].
Prior to this currently optimal result, there is a long line of research optimizing both the approximation
ratio and the complexity, see [Arora et al., 2004, Leighton and Rao, 1999]. There are also works
concerning approximating SPARSEST CUT on special graph classes such as planar graphs [Lee and
Sidiropoulos, 2010], graphs with low treewidth [Chlamtac et al., 2010, Gupta et al., 2013, Chalermsook
et al., 2024].

For an overview of the LP methods for SPARSEST CUT, see [Chekuri, 2024].
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1.3 open problems

One major open problem for SPARSEST CUT is the best approximation ratio for planar graphs. It is
conjectured that the ratio for planar graphs is O(1) but currently the best lowerbound is O(

p

log n). For
graphs treewidth k, an open problem is that whether there is a 2 approximation algorithm that runs in
2O(k) poly(n).

2 Literature Review
The seminal work of Leighton and Rao [1999] starts this line of research. They studied multicommodity
flow problem and proved a O(log n) flow-cut gap. They also developed O(log n) approximation algorithm
for multicommodity flow problems, which can imply O(log n) approximation for SPARSEST CUT and
O(log2 n) approximation for NON-UNIFORM SPARSEST CUT. The technique is called region growing. They
also discovered a lowerbound of Ω(log n) via expanders. Note that any algorithm achieving the O(log n)
flow cut gap implies an O(log2 n) approximation for NON-UNIFORM SPARSEST CUT, but better ratio is
still possible through other methods. This paper showed that O(log2 n) is the best approximation we can
achieve using flow-cut gap.

For NON-UNIFORM SPARSEST CUT [Leighton and Rao, 1999] only guarantees a O(log2 n) approxi-
mation. This is further improved by [Linial et al., 1995] and [Aumann and Rabani, 1998]. Aumann
and Rabani [1998] applied metric embedding to NON-UNIFORM SPARSEST CUT and obtained a O(log n)
approximation. The connections between metric embedding and NON-UNIFORM SPARSEST CUT is influ-
ential. NON-UNIFORM SPARSEST CUT can be formulated as an integer program. Aumann and Rabani
considered the metric relaxation of the IP. They observed that NON-UNIFORM SPARSEST CUT is polynomial
time solvable for trees and more generally for all ℓ1 metrics. The O(log n) approximation follows from
the O(log n) distortion in the metric embedding theorem.
[Arora et al., 2004] and [Arora et al., 2010] further improved the approximation ratio for SPARSEST

CUT to O(
p

log n) via semidefinite relaxation. This is currently the best approximation ratio for SPARSEST

CUT.
There is also plenty of research concerning SPARSEST CUT on some graph classes, for example

[Bonsma et al., 2012]. One of the most popular class is graphs with constant treewidth. [Chalermsook
et al., 2024] gave a O(k2) approximation algorithm with complexity 2O(k) poly(n). [Cohen-Addad et al.,
2024] obtained a 2-approximation algorithm for sparsest cut in treewidth k graph with running time
22O(k)

poly(n).
SPARSEST CUT is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in

[Chekuri, 2024] is that shortest path distance in trees is an ℓ1 metric. There are works concerning planar
graphs and more generally graphs with constant genus. [Leighton and Rao, 1999] provided a Ω(log n)
lowerbound for flow-cut gap for SPARSEST CUT. However, it is conjectured that the gap is O(1), while
currently the best upperbound is still O(

p

log n) [Rao, 1999]. For graphs with constant genus, [Lee and
Sidiropoulos, 2010] gives a O(

p

log g) approximation for SPARSEST CUT, where g is the genus of the
input graph. For flow-cut gap in planar graphs the techniques are mainly related to metric embedding
theory.
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3 LP

min

∑

e ce xe
∑

i Di yi

s.t.
∑

e∈p

xe ≥ yi ∀p ∈ Psi ,t i
,∀i

xe, yi ∈ {0, 1}

(1)

min
∑

e

ce xe

s.t.
∑

i

Di yi = 1

∑

e∈p

xe ≥ yi ∀p ∈ Psi ,t i
,∀i

xe, yi > 0

(2)

max λ

s.t.
∑

p∈Psi ,ti

yp ≥ λDi ∀i

∑

i

∑

p∈Psi ,ti
,p∋e

yp ≥ ce ∀e

yp ≥ 0

(3)

min
∑

uv∈E

cuvd(u, v)

s.t.
∑

i

Did(si , t i) = 1

d is a metric on V

(4)

1. IP1 ≥ LP2. Given any feasible solution to IP1, we can scale all xe and yi simultaneously with
factor 1/
∑

i Di yi . The scaled solution is feasible for LP2 and gets the same objective value.

2. LP2 = LP3. by duality.

3. LP4 = LP2. It is easy to see LP4 ≥ LP2 since any feasible metric to LP4 induces a feasible solution
to LP2. In fact, the optimal solution to LP2 also induces a feasible metric. Consider a solution
xe, yi to LP2. Let dx be the shortest path metric on V using edge length xe. It suffices to show that
yi = dx(si , t i). This can be seen from a reformulation of LP2. The constraint

∑

i Di yi = 1 can be
removed and the objective becomes

∑

e ce xe/
∑

i Di yi. This reformulation does not change the
optimal solution. Now suppose in the optimal solution to LP2 there is some yi which is strictly
smaller than dx(si , t i). Then the denominator

∑

i Di yi in the objective of our reformulation can be
larger, contradicting to the optimality of solution xe, yi .

Theorem 3.1 (Japanese Theorem) D is a demand matrix. D is routable in G iff∀l : E→ R+,
∑

e ce l(e)≥
∑

uv D(u, v)dl(u, v), where dl(s, t) is the short path distance induced by l(e).

Note that D is routable iff the optimum of the LPs is at least 1. Then the theorem follows directly from
LP4.

3.1 Flow-cut gap
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