
Sparsest Cut

1 Introduction
SPARSEST CUT is a fundamental problem in graph algorithms with connections to various cut
related problems.

Problem 1 (NON-UNIFORM SPARSEST CUT) The input is a graph 𝐺 = (𝑉, 𝐸) with edge capacities 𝑐 ∶
𝐸 → ℝ+ and a set of vertex pairs {𝑠1, 𝑡1}, … , {𝑠𝑘, 𝑡𝑘} along with demand values 𝐷1, … , 𝐷𝑘 ∈ ℝ+. The
goal is to find a cut 𝛿(𝑆) of 𝐺 such that 𝑐(𝛿(𝑆))

∑𝑖∶|𝑆∩{𝑠𝑖,𝑡𝑖}|=1 𝐷𝑖
is minimized.

In other words, NON-UNIFORM SPARSEST CUT finds the cut that minimizes its capacity divided
by the sum of demands of the vertex pairs it separates. There are two important varients of
NON-UNIFORM SPARSEST CUT. Note that we always consider unordered pair {𝑠𝑖, 𝑡𝑖}, i.e., we do not
distinguish {𝑠𝑖, 𝑡𝑖} and {𝑡𝑖, 𝑠𝑖}.

UNIFORM SPARSEST CUT is the uniform version of NON-UNIFORM SPARSEST CUT. The demand is
1 for every possible vertex pair {𝑠𝑖, 𝑡𝑖}. In this case, we can remove from the input the pairs and
demands. The goal becomes to minimize 𝑐(𝛿(𝑆))

|𝑆||𝑉∖𝑆| .
EXPANSION further simplifies the objective of UNIFORM SPARSEST CUT to min|𝑆|≤𝑛/2

𝑐(𝛿(𝑆))
|𝑆| .

These problems are interesting since they are related to central concepts in graph theory and
help to design algorithms for hard problems on graph. One connections is expander graphs. The
importance of expander graphs is thoroughly surveyed in [HLW06]. The optimum of EXPANSION
is also known as Cheeger constant or conductance of a graph. UNIFORM SPARSEST CUT provides a
2-approximation of EXPANSION, which is especially important in the context of expander graphs
as it is a way to measure the edge expansion of a graph. NON-UNIFORM SPARSEST CUT is related
to other cut problems such as Multicut and Balanced Separator. From a more mathematical per-
spective, the techniques developed for approximating SPARSEST CUT are deeply related to metric
embedding, which is another fundamental problem in geometry. Besides theoretical interests,
SPARSEST CUT is useful in practical scenarios such as in image segmentation and in somemachine
leaning algorithms.
1.1 related works
NON-UNIFORM SPARSEST CUT is APX-hard [CK09] and, assuming the Unique Game Conjecture, has
no polynomial time constant factor aproximation algorithm [CKK+05]. UNIFORM SPARSEST CUT ad-
mits no PTAS [AMS07], assuming that NP-complete problems cannot be solved in randomized
subexponential time. The currently best approximation algorithm for UNIFORM SPARSEST CUT
has ratio 𝑂(√log𝑛) and running time �̃�(𝑛2) [AHK10]. For NON-UNIFORM SPARSEST CUT the best
approximation is 𝑂(√log𝑛 log log𝑛) [ALN05, ALN07]. There are also works concerning approx-
imating SPARSEST CUT on special graph classes such as planar graphs [LS10], graphs with low
treewidth [CKR10,GTW13,CKM+24].
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The seminal work of [LR88, LR99] starts this line of research. They studied multicommodity
flow problem and proved a 𝑂(log𝑛) flow-cut gap for UNIFORM SPARSEST CUT. They developed
a 𝑂(log𝑛) approximation algorithm for UNIFORM SPARSEST CUT. The technique is called region
growing. They also discovered a lowerbound of Ω(log𝑛). Note that the flow-cut gap describes
the ratio of the max concurrent flow to the min sparsity of a cut. [GVY96] studied the flow-cut gap
forminmulticut andmaxmulticommodity flow, which is alsoΘ(log𝑛). The result of Garg, Vazirani
and Yannakakis [GVY96] provides an𝑂(log𝑛) approximation algorithm for Multicut, which implies
a 𝑂(log2 𝑛) approximation for NON-UNIFORM SPARSEST CUT. Although [LR99] showed an Ω(log𝑛)
lowerbound for flow-cut gap, better approximation for SPARSEST CUT is still possible through
other methods.

For NON-UNIFORM SPARSEST CUT the 𝑂(log2 𝑛) approximation is further improved by [LLR95]
and [AR98]. [AR98] applied metric embedding to NON-UNIFORM SPARSEST CUT and obtained a
𝑂(log𝑛) flow-cut gap as well as a 𝑂(log𝑛) approximation algorithm for NON-UNIFORM SPARSEST
CUT. The connections between metric embedding and NON-UNIFORM SPARSEST CUT is influential.
NON-UNIFORM SPARSEST CUT can be formulated as an integer program. [AR98], [AR95] and [LLR95]
considered the metric relaxation of the IP. They observed that NON-UNIFORM SPARSEST CUT is
polynomial time solvable for trees and more generally for all ℓ1 metrics. The 𝑂(log𝑛) gap follows
from the 𝑂(log𝑛) distortion in the metric embedding theorem.

[ARV04] and [AHK10] further improved the approximation ratio for UNIFORM SPARSEST CUT to
𝑂(√log𝑛) via semidefinite relaxation. This is currently the best approximation ratio for UNIFORM
SPARSEST CUT on general undirected graphs. For NON-UNIFORM SPARSEST CUT, the approximation
is improved to 𝑂(√log𝑛 log log𝑛) [ALN05,ALN07]. Later [GS13] gives a 1+𝛿

ϵ
approximation in time

2𝑟/(𝛿ϵ) poly(𝑛) provided that 𝜆𝑟 ≥ OPT /(1 − 𝛿).
There is also plenty of research on SPARSEST CUT in some graph classes, for example [BBPP12].

One of the most popular class is graphs with constant treewidth. [CKM+24] gave a 𝑂(𝑘2) approxi-
mation algorithm with complexity 2𝑂(𝑘) poly(𝑛). [CAMV24] obtained a 2-approximation algorithm
for sparsest cut in treewidth 𝑘 graph with running time 22𝑂(𝑘) poly(𝑛).

SPARSEST CUT is easy on trees and the flow-cut gap is 1 for trees. One explaination1 is that
shortest path distance in trees is an ℓ1 metric. There are works concerning planar graphs and
more generally graphs with constant genus. [LR99] provided a Ω(log𝑛) lowerbound for flow-cut
gap for SPARSEST CUT. However, it is conjectured that the gap is 𝑂(1), while currently the best
upperbound is still 𝑂(√log𝑛) [Rao99]. For graphs with constant genus, [LS10] gives a 𝑂(√log𝑔)
approximation for SPARSEST CUT, where 𝑔 is the genus of the input graph. For flow-cut gap in
planar graphs the techniques are mainly related to metric embedding theory2.

2 Approximations
Techniques for approximating SPARSEST CUT.

1https://courses.grainger.illinois.edu/cs598csc/fa2024/Notes/lec-sparsest-cut.pdf
2https://home.ttic.edu/~harry/teaching/teaching.html
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2.1 LP Θ(log𝑛) - NON-UNIFORM SPARSEST CUT

min
∑𝑒 𝑐𝑒𝑥𝑒
∑𝑖 𝐷𝑖𝑦𝑖

𝑠.𝑡. ∑
𝑒∈𝑝

𝑥𝑒 ≥ 𝑦𝑖 ∀𝑝 ∈ P𝑠𝑖 ,𝑡𝑖
, ∀𝑖

𝑥𝑒, 𝑦𝑖 ∈ {0, 1}

(1)

min ∑
𝑒
𝑐𝑒𝑥𝑒

𝑠.𝑡. ∑
𝑖
𝐷𝑖𝑦𝑖 = 1

∑
𝑒∈𝑝

𝑥𝑒 ≥ 𝑦𝑖 ∀𝑝 ∈ P𝑠𝑖 ,𝑡𝑖
, ∀𝑖

𝑥𝑒, 𝑦𝑖 > 0

(2)

max 𝜆
𝑠.𝑡. ∑

𝑝∈P𝑠𝑖,𝑡𝑖

𝑦𝑝 ≥ 𝜆𝐷𝑖 ∀𝑖

∑
𝑖

∑
𝑝∈P𝑠𝑖,𝑡𝑖 ,𝑝∋𝑒

𝑦𝑝 ≥ 𝑐𝑒 ∀𝑒

𝑦𝑝 ≥ 0

(3)

min ∑
𝑢𝑣∈𝐸

𝑐𝑢𝑣𝑑(𝑢, 𝑣)

𝑠.𝑡. ∑
𝑖
𝐷𝑖𝑑(𝑠𝑖, 𝑡𝑖) = 1

𝑑 is a metric on 𝑉

(4)

1. IP1 ≥ LP2. Given any feasible solution to IP1, we can scale all 𝑥𝑒 and 𝑦𝑖 simultaneously
with factor 1/∑𝑖 𝐷𝑖𝑦𝑖. The scaled solution is feasible for LP2 and gets the same objective
value.

2. LP2 = LP3. by duality.

3. LP4 = LP2. It is easy to see LP4 ≥ LP2 since any feasible metric to LP4 induces a feasible
solution to LP2. In fact, the optimal solution to LP2 also induces a feasible metric. Con-
sider a solution 𝑥𝑒, 𝑦𝑖 to LP2. Let 𝑑𝑥 be the shortest path metric on 𝑉 using edge length
𝑥𝑒. It suffices to show that 𝑦𝑖 = 𝑑𝑥(𝑠𝑖, 𝑡𝑖). This can be seen from a reformulation of LP2.
The constraint ∑𝑖 𝐷𝑖𝑦𝑖 = 1 can be removed and the objective becomes ∑𝑒 𝑐𝑒𝑥𝑒/∑𝑖 𝐷𝑖𝑦𝑖. This
reformulation does not change the optimal solution. Now suppose in the optimal solu-
tion to LP2 there is some 𝑦𝑖 which is strictly smaller than 𝑑𝑥(𝑠𝑖, 𝑡𝑖). Then the denominator
∑𝑖 𝐷𝑖𝑦𝑖 in the objective of our reformulation can be larger, contradicting to the optimality
of solution 𝑥𝑒, 𝑦𝑖.

Theorem 2.1 (Japanese Theorem) 𝐷 is a demand matrix. 𝐷 is routable in 𝐺 iff ∀𝑙 ∶ 𝐸 → ℝ+,
∑𝑒 𝑐𝑒𝑙(𝑒) ≥ ∑𝑢𝑣 𝐷(𝑢, 𝑣)𝑑𝑙(𝑢, 𝑣), where 𝑑𝑙(𝑠, 𝑡) is the short path distance induced by 𝑙(𝑒).

Note that 𝐷 is routable iff the optimum of the LPs is at least 1. Then the theorem follows directly
from LP4.
Θ(log𝑛)flow-cut gap The flow-cut gap is defined asOPT(IP1)/OPT(LP2) and theΘ(log𝑛) bound
is proven in [LR99].

Suppose that 𝐺 satisfies the cut condition, that is, 𝑐(𝛿(𝑆)) is at least the demand separated
by 𝛿(𝑆) for all 𝑆 ⊂ 𝑉 . This implies OPT(IP1) ≥ 1 and in this case the largest integrality gap is
1/OPT(LP2). For 1 and 2-commodity flow problem the gap is 1 [FF56,Hu63]. However, for 𝑘 ≥ 3
the gap becomes larger3. It is mentioned in [LR99] that [Sch90] proved if the demand graph does
not contain either three disjoint edges or a triangle and a disjoint edge, then the gap is 1.

3https://en.wikipedia.org/wiki/Approximate_max-flow_min-cut_theorem
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For the Ω(log𝑛) lowerbound consider an UNIFORM SPARSEST CUT instance on some 3-regular
graph 𝐺 with unit capacity. In [LR99] they further required that for any 𝑆 ⊂ 𝑉 and small constant
𝑐, |𝛿(𝑆)| ≥ 𝑐min(|𝑆|, |�̄�|). Then the value of the sparsest cut is at least 𝑐

𝑛−1 . Observe that for any
fixed vertex 𝑣, there are at most 𝑛/2 vertices within distance log𝑛 − 3 of 𝑣. Thus at least half of
the (𝑛2) demand pairs are connected with shortest path of length at least log𝑛 − 2. To sustain a
flow 𝑓 we need at least 12 (

𝑛
2)(log𝑛 − 2)𝑓 ≤ 3𝑛/2. Any feasible flow satisfies 𝑓 ≤ 3𝑛

(𝑛2)(log𝑛−2)
and the

gap is therefore Ω(log𝑛).
For the upperbound it suffices to show there exists a cut of ratio 𝑂(𝑓 log𝑛). [LR99] gave an

algorithmic proof based on LP4. This can also be proven using metric embedding results. We
can solve LP4 in polynomial time and get a metric on 𝑉 . Then there is an embedding of 𝑉 into
ℝ𝑑 with ℓ1 metric such that the distortion is 𝑂(log𝑛). Since ℓ1 metric is in the cut cone, our
metric on ℝ𝑑 is a conic combination of cut metrics, which implies4 that there is a cut in the conic
combination with value at most 𝑂(log𝑛)OPT(LP4). To find such a cut it suffices to compute a
conic combination of cut metrics which is exactly our ℓ1 metric in ℝ𝑑 . One way to do this is test
(𝑛 − 1)𝑑 cuts by observing the followings,

1. Every coordinate of ℝ𝑑 corresponds to a line metric;

2. ℓ1 metric in ℝ𝑑 is the sum of those line metrics;

3. Every line metric on 𝑛 points can be represented as some conic combination of 𝑛 − 1 cut
metrics.

The gap can be improved to log 𝑘 through a stronger metric embedding theorem (𝑘 is the
number of demand pairs).

Remark I believe the later method is more general and works for NON-UNIFORM SPARSEST CUT,
while the former method is limited to UNIFORM SPARSEST CUT. However, the proof in [LR99] may
have connections with the proof of Bourgain’s thm? Why does their method fail to work on
NON-UNIFORM SPARSEST CUT?

2.2 SDP 𝑂(√log𝑛) - UNIFORM SPARSEST CUT
This 𝑂(√log𝑛) approximation via SDP is developed in [ARV04]. This is also described in [WS11,
section 15.4].

min
∑𝑖𝑗∈𝐸 𝑐𝑖𝑗(𝑥𝑖 − 𝑥𝑗)2

∑𝑖𝑗∈𝑉×𝑉 (𝑥𝑖 − 𝑥𝑗)2

𝑠.𝑡. (𝑥𝑖 − 𝑥𝑗)2 + (𝑥𝑗 − 𝑥𝑘)2 ≥ (𝑥𝑖 − 𝑥𝑘)2 ∀𝑖, 𝑗, 𝑘 ∈ 𝑉
𝑥𝑖 ∈ {+1, −1} ∀𝑖 ∈ 𝑉

This SDP models UNIFORM SPARSEST CUT since every assignment of 𝑥 corresponds to a cut and
the objective is the sparsity of the cut (up to a constant factor, but we don’t care since we cannot
achieve a constant factor approximation anyway). Consider a relaxation which is similar to LP2.

4This requires some work. See https://courses.grainger.illinois.edu/cs598csc/fa2024/Notes/lec-sparsest-cut.pdf
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min ∑
𝑖𝑗∈𝐸

𝑐𝑖𝑗‖𝑣𝑖 − 𝑣𝑗‖2

𝑠.𝑡. ∑
𝑖𝑗∈𝑉×𝑉

‖𝑣𝑖 − 𝑣𝑗‖2 = 1

‖𝑣𝑖 − 𝑣𝑗‖2 + ‖𝑣𝑗 − 𝑣𝑘‖2 ≥ ‖𝑣𝑖 − 𝑣𝑘‖2 ∀𝑖, 𝑗, 𝑘 ∈ 𝑉
𝑣𝑖 ∈ ℝ𝑛 ∀𝑖 ∈ 𝑉

To get a 𝑂(√log𝑛) (randomized) approximation algorithm we need to first solve the SDP and
then round the solution to get a cut 𝛿(𝑆) with 𝑐(𝛿(𝑆)) = |𝑆|OPT(𝑆𝐷𝑃)𝑂(𝑛√log𝑛). If there are two
sets 𝑆, 𝑇 ⊂ 𝑉 both of size Ω(𝑛) that are well-separated, in the sense that for any 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 ,
‖𝑣𝑠 − 𝑣𝑡‖2 = Ω(1/√log𝑛), then the SDP gap follows from

𝑐(𝛿(𝑆))
|𝑆||𝑉 − 𝑆| ≤

∑𝑖𝑗∈𝐸 𝑐𝑖𝑗‖𝑣𝑖 − 𝑣𝑗‖2

∑𝑖∈𝑆,𝑗∈𝑇 ‖𝑣𝑖 − 𝑣𝑗‖2
≤
∑𝑖𝑗∈𝐸 𝑐𝑖𝑗‖𝑣𝑖 − 𝑣𝑗‖2

𝑛2 𝑂(√log𝑛) ≤ 𝑂(√log𝑛)OPT(𝑆𝐷𝑃).

This is the framework of the proof in [ARV04]. I think the intuition behind this SDP relaxation
is almost the same as LP4. ℓ1 metrics are good since they are in the cut cone. However, if we
further require that the metric in LP4 is an ℓ1 metric in ℝ𝑑 , then resulting LP is NP-hard, since
the integrality gap becomes 1. [LR99] showed that the Θ(log𝑛) gap is tight for LP4, but add extra
constraints to LP4 (while keeping it to be a relaxation of SPARSEST CUT and to be polynomially
solvable) may provides better gap. The SDP relaxation is in fact trying to enforce the metric to
be ℓ22 in ℝ𝑛.

Remark 𝑂(√log𝑛) is likely to be the optimal bound for the above SDP. To get better gap one
can stay with SDP and add more additional constraints (like Sherali-Adams, Lovász-Schrijver
and Lasserre relaxations); or think distance as variables in an LP and force feasible solution
to be certain kind of metrics. [AGS13] is following the former method and considers Lasserre
relaxations. For the latermethod, getting a cut from the optimalmetric is the same as embedding
it to ℓ1. Thus it still relies on progress in metric embedding theory. Note that both methods need
to satisfy

1. the further constrained programs is polynomially solvable,

2. it remains a relaxation of SPARSEST CUT,

3. the gap is better.

The Lasserre relaxation of SDP automatically satisfies 1 and 2. But I believe there may be some
very strange kind of metric that embeds into ℓ1 well?

Another possible approach for NON-UNIFORM SPARSEST CUT would be making the number of
demand vertices small and then applying a metric embedding (contraction) to ℓ1 with better
distortion on those vertices.

2.3 SDP 𝑂(√log𝑛 log log𝑛)-NON-UNIFORM SPARSEST CUT
Arora, Lee andNaor [ALN05,ALN07] proved that there is an embedding from ℓ22 to ℓ1 with distortion
𝑂(√log𝑛 log log𝑛). This implies an approximation for NON-UNIFORM SPARSEST CUT with the same
ratio.
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3 Nealy uniform SPARSEST CUT
What is the best approximation ratio for UNIFORM SPARSEST CUT instances where almost all de-
mands are uniform. More formally, consider a NON-UNIFORM SPARSEST CUT instance where only 𝑘
vertices are associated with demand pairs with 𝐷𝑖 ≠ 1, we want to show that we can approximate
nearly uniform SPARSEST CUT in polynomial time to ratio 𝑂(√log𝑛𝑓(𝑘)), where 𝑓(𝑘) = 𝑂(log log𝑛)
when 𝑘 → 𝑛. Let those 𝑘 non uniform vertices be outliers. [ARV04] shows that for non-outlier
verteices the optimal solution to SDP (a metric) can be embedded into ℓ1 with distortion √log𝑛.
[CS23] is a recent result on getting approximate (𝑘, 𝑐)-outlier embeddings.
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