Approximation Algorithms for Sparsest Cut
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Research problem What is the best possible approximation rate of linear programming
based approximation algorithms for SpaArRsesT CuT? What about algorithms for planar
graphs?

1 Introduction

SPARSEST CUT is a fundamental problem in graph algorithms with connections to various
cut related problems.

Problem 1 (NoN-UNIFORM SPARSEST CuT) The input is a graph G = (V, E) with edge ca-

pacities ¢ : E — R, and a set of vertex pairs {sy,t1},...,{s, t;} along with demand values
Di,...,D, €R,. The goal is to find a cut 5(S) of G such that % is minimized.
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In other words, NoN-UNIFORM SPARSEST CUT finds the cut that minimizes its capacity
divided by the sum of demands of the vertex pairs it separates. There are two important
varients of NON-UNIFORM SPARSEST CUT. Note that we always consider unordered pair
{s;, t;}, i.e., we do not distinguish {s;, t;} and {t;,s;}.

SPARSEST CuT is the uniform version of NON-UNIFORM SPARSEST CUT. The demand is 1
for every possible vertex pair {s;, t;}. In this case, we can remove from the input the pairs

and demands. The goal becomes to minimize 25J

ISIVAS]*
ExpansioN further simplifies the objective of SPARSEST CUT to min<,/, %.

These problems are interesting since they are related to central concepts in graph theory
and help to design algorithms for hard problems on graph. One connections is expander
graphs. The importance of expander graphs is thoroughly surveyed in [Hoory et al., 2006].
The optimum of ExPANSION is also known as Cheeger constant or conductance of a graph.
SPARSEST CUT provides a 2-approximation of Cheeger constant, which is especially important
in the context of expander graphs as it is a way to measure the edge expansion of a graph.
NoN-UNIFORM SPARSEST CuUT is related to other cut problems such as Multicut and Balanced
Separator.

1.1 related works

SPARSEST CUT is APX-hard [Chuzhoy and Khanna, 2009] and, assuming the Unique Game
Conjecture, has no polynomial time constant factor aproximation algorithm[Chawla et al.,
2005]. The currently best approximation algorithm has ratio O(4/logn) and running time
O(n?) [Arora et al., 2010]. Prior to this currently optimal result, there is a long line of



research optimizing both the approximation ratio and the complexity, see [Arora et al., 2004,
Leighton and Rao, 1999]. There are also works concerning approximating SPARSEST CUT
on special graph classes such as planar graphs [Lee and Sidiropoulos, 2010], graphs with
low tree width [Chalermsook et al., 2024, Gupta et al., 2013].

One major open problem for SPARSEST CuUT is the best approximation ratio for planar
graphs. It is conjectured that the ratio for planar graphs is O(1) but currently the best
lowerbound is O(4/logn).
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