misleading typo
This commit is contained in:
parent
5a59d520fe
commit
e9161135ae
2
main.tex
2
main.tex
@ -56,7 +56,7 @@ One major open problem for \scut{} is the best approximation ratio for planar gr
|
|||||||
|
|
||||||
\section{Literature Review}
|
\section{Literature Review}
|
||||||
% Requirement: summarize previous research contributions and identify the gap or the specific problem
|
% Requirement: summarize previous research contributions and identify the gap or the specific problem
|
||||||
The seminal work of \cite{leighton_multicommodity_1999} starts this line of research. They studied multicommodity flow problem and proved a $O(\log n)$ flow-cut gap. They also developed $O(\log n)$ approximation algorithm for multicommodity flow problems, which can imply $O(\log n)$ approximation for \scut{} and $O(\log^2 n)$ approximation for \nonuscut{}. The technique is called region growing. They also discovered a lowerbound of $\Omega(\log n)$ via expanders. Note that any algorithm achieving the $O(\log n)$ flow cut gap implies an $O(\log^2 n)$ approximation for \nonuscut{}, but it is possible to approximate (non-uniform) \scut{} with better ratio. This paper showed that $O(\log^2 n)$ is the best ratio we can achieve using flow-cut gap.
|
The seminal work of \cite{leighton_multicommodity_1999} starts this line of research. They studied multicommodity flow problem and proved a $O(\log n)$ flow-cut gap. They also developed $O(\log n)$ approximation algorithm for multicommodity flow problems, which can imply $O(\log n)$ approximation for \scut{} and $O(\log^2 n)$ approximation for \nonuscut{}. The technique is called region growing. They also discovered a lowerbound of $\Omega(\log n)$ via expanders. Note that any algorithm achieving the $O(\log n)$ flow cut gap implies an $O(\log^2 n)$ approximation for \nonuscut{}, but better ratio is still possible through other methods. This paper showed that $O(\log^2 n)$ is the best approximation we can achieve using flow-cut gap.
|
||||||
|
|
||||||
For \nonuscut{} \citep{leighton_multicommodity_1999} only guarantees a $O(\log^2 n)$ approximation. This is further improved by \citep{Linial_London_Rabinovich_1995} and \citep{lognGapAumann98}. \cite{lognGapAumann98} applied metric embedding to \nonuscut{} and obtained a $O(\log n)$ approximation. The connections between metric embedding and \nonuscut{} is influential. \nonuscut{} can be formulated as an integer program. \citeauthor{lognGapAumann98} considered the metric relaxation of the IP. They observed that \nonuscut{} is polynomial time solvable for trees and more generally for all $\ell_1$ metrics. The $O(\log n)$ approximation follows from the $O(\log n)$ distortion in the metric embedding theorem.
|
For \nonuscut{} \citep{leighton_multicommodity_1999} only guarantees a $O(\log^2 n)$ approximation. This is further improved by \citep{Linial_London_Rabinovich_1995} and \citep{lognGapAumann98}. \cite{lognGapAumann98} applied metric embedding to \nonuscut{} and obtained a $O(\log n)$ approximation. The connections between metric embedding and \nonuscut{} is influential. \nonuscut{} can be formulated as an integer program. \citeauthor{lognGapAumann98} considered the metric relaxation of the IP. They observed that \nonuscut{} is polynomial time solvable for trees and more generally for all $\ell_1$ metrics. The $O(\log n)$ approximation follows from the $O(\log n)$ distortion in the metric embedding theorem.
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user