This commit is contained in:
Yu Cong 2025-05-20 17:20:36 +08:00
parent 66fde92bd0
commit cecdc0660e
2 changed files with 27 additions and 0 deletions

BIN
main.pdf

Binary file not shown.

View File

@ -152,6 +152,33 @@ I believe the later method is more general and works for \nonuscut{}, while the
\subsection{SDP $O(\sqrt{\log n})$ - \uscut{}} \subsection{SDP $O(\sqrt{\log n})$ - \uscut{}}
This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}. This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}.
\begin{equation*}
\begin{aligned}
\min& & \frac{\sum_{ij\in E}c_{ij}(x_i-x_j)^2}{\sum_{ij\in V\times V}(x_i-x_j)^2}& & &\\
s.t.& & (x_i-x_j)^2 + (x_j-x_k)^2&\geq (x_i-x_k)^2 & &\forall i,j,k\in V\\
& & x_i&\in \{+1,-1\} & &\forall i \in V
\end{aligned}
\end{equation*}
This SDP models \uscut{} since every assignment of $x$ corresponds to a cut and the objective is the sparsity of the cut (up to a constant factor, but we don't care since we cannot achieve a constant factor approximation anyway). Now we consider a relaxation which is similar to \lp{}.
\begin{equation*}
\begin{aligned}
\min& & \sum_{ij\in E}c_{ij}\|v_i-v_j\|^2& & &\\
s.t.& & \sum_{ij\in V\times V}\|v_i-v_j\|^2&=1 & &\\
& & \|v_i-v_j\|^2 + \|v_j-v_k\|^2&\geq \|v_i-v_k\|^2 & &\forall i,j,k\in V\\
& & v_i&\in \R^n & &\forall i \in V
\end{aligned}
\end{equation*}
To get a $O(\sqrt{\log n})$ (randomized) approximation algorithm we need to first solve the SDP and then round the solution to get integral $x$ with $O(\sqrt{\log n}) \opt(SDP)$ upperbound on the objective.
\[
\frac{c(\delta(S))}{|S||V-S|}\leq \frac{\sum_{ij\in E} c_{ij}\|v_i-v_j\|^2}{\sum_{i\in S,j\in T} \|v_i-v_j\|^2}\leq ?
\]
If we can find two sets $S,T\subset V$ both of size $\Omega(n)$ that are well-separated, in the sense that for any $s\in S$ and $t\in T$, $\|v_s-v_t\|^2=\Omega(1/\sqrt{\log n})$, then we can move
\bibliographystyle{alpha} \bibliographystyle{alpha}
\bibliography{ref} \bibliography{ref}
\end{document} \end{document}