lp notes
This commit is contained in:
		
							
								
								
									
										65
									
								
								main.tex
									
									
									
									
									
								
							
							
						
						
									
										65
									
								
								main.tex
									
									
									
									
									
								
							@@ -68,25 +68,56 @@ a 2-approximation algorithm for sparsest cut in treewidth $k$ graph with running
 | 
				
			|||||||
\scut{} is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in \citep{sparsest_cut_notes} is that shortest path distance in trees is an $\ell_1$ metric. There are works concerning planar graphs and more generally graphs with constant genus.
 | 
					\scut{} is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in \citep{sparsest_cut_notes} is that shortest path distance in trees is an $\ell_1$ metric. There are works concerning planar graphs and more generally graphs with constant genus.
 | 
				
			||||||
\citep{leighton_multicommodity_1999} provided a $\Omega(\log n)$ lowerbound for flow-cut gap for \scut{}. However, it is conjectured that the gap is $O(1)$, while currently the best upperbound is still $O(\sqrt{\log n})$ \citep{rao_small_1999}.
 | 
					\citep{leighton_multicommodity_1999} provided a $\Omega(\log n)$ lowerbound for flow-cut gap for \scut{}. However, it is conjectured that the gap is $O(1)$, while currently the best upperbound is still $O(\sqrt{\log n})$ \citep{rao_small_1999}.
 | 
				
			||||||
For graphs with constant genus, \citep{lee_genus_2010} gives a $O(\sqrt{\log g})$ approximation for \scut{}, where $g$ is the genus of the input graph.  For flow-cut gap in planar graphs the techniques are mainly related to metric embedding theory.
 | 
					For graphs with constant genus, \citep{lee_genus_2010} gives a $O(\sqrt{\log g})$ approximation for \scut{}, where $g$ is the genus of the input graph.  For flow-cut gap in planar graphs the techniques are mainly related to metric embedding theory.
 | 
				
			||||||
\section{The Research Design}
 | 
					 | 
				
			||||||
% Requirement : Your research design may include exact details of your design and the information should be presented in coherent paragraphs:
 | 
					 | 
				
			||||||
% Example:
 | 
					 | 
				
			||||||
% Research type: e.g. qualitative study, using primary data
 | 
					 | 
				
			||||||
% Sources and other important details 
 | 
					 | 
				
			||||||
% Research methods: e.g. Questionnaire surveys and interviews
 | 
					 | 
				
			||||||
% Possible difficulties/ problems or issues worth considering 
 | 
					 | 
				
			||||||
% Data analysis (the specific data analysis method)
 | 
					 | 
				
			||||||
% e.g. Using SPSS to analyze the survey data and Using NVivo to analyze the interview data (details of the method and reasons for the choice)
 | 
					 | 
				
			||||||
% The significance/ implications of the study
 | 
					 | 
				
			||||||
\paragraph{Research type:} theoretical research
 | 
					 | 
				
			||||||
\paragraph{Possible difficulties:} The technical depth of open problems in \scut{} might be larger than I expected. If I have no idea after thoroughly understanding metric embedding methods and SDP relaxation, I will immediately move to other problems.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
\section{Time Table}
 | 
					 | 
				
			||||||
% Data collection: e.g. During the program and first 6 months after the program (Aug. 2023- May. 2024)
 | 
					 | 
				
			||||||
% Data analysis: June 2024- Sept. 2024
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
understanding existing methods: 2 weeks.\newline
 | 
					\section{LP}
 | 
				
			||||||
solving a problem or imporving some approximation: at most 2 months.
 | 
					
 | 
				
			||||||
 | 
					\begin{minipage}{0.47\linewidth}
 | 
				
			||||||
 | 
					\begin{equation}\label{IP}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\min&   &   \frac{\sum_e c_e x_e}{\sum_{i} D_i y_i}&    &   &\\
 | 
				
			||||||
 | 
					s.t.&   &   \sum_{e\in p} x_e&\geq y_i                  &   &\forall \mathcal{P}_{s_i,t_i}, \forall i\\
 | 
				
			||||||
 | 
					    &   &   x_e,y_i&\in \{0,1\}
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation}
 | 
				
			||||||
 | 
					\end{minipage}
 | 
				
			||||||
 | 
					\begin{minipage}{0.47\linewidth}
 | 
				
			||||||
 | 
					\begin{equation}\label{LP}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\min&   &   \sum_e c_e x_e&     &   &\\
 | 
				
			||||||
 | 
					s.t.&   &   \sum_i D_iy_i&=1    &   &\\
 | 
				
			||||||
 | 
					    &   &   \sum_{e\in p} x_e&\geq y_i                  &   &\forall \mathcal{P}_{s_i,t_i}, \forall i\\
 | 
				
			||||||
 | 
					    &   &   x_e,y_i&>0
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation}
 | 
				
			||||||
 | 
					\end{minipage}
 | 
				
			||||||
 | 
					\bigskip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{minipage}{0.47\linewidth}
 | 
				
			||||||
 | 
					\begin{equation}\label{dual}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\max&   &   \lambda&    &   &\\
 | 
				
			||||||
 | 
					s.t.&   &   \sum_{p\in\mathcal{P}_{s_i,t_i}} y_p&\geq \lambda D_i   &   &\forall i\\
 | 
				
			||||||
 | 
					    &   &   \sum_i \sum_{p\in \mathcal{P}_{s_i,t_i}, p\ni e}y_p&\geq c_e    & &\forall e\\
 | 
				
			||||||
 | 
					    &   &   y_p&\geq 0
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation}
 | 
				
			||||||
 | 
					\end{minipage}
 | 
				
			||||||
 | 
					\begin{minipage}{0.47\linewidth}
 | 
				
			||||||
 | 
					\begin{equation}\label{metric}
 | 
				
			||||||
 | 
					\begin{aligned}
 | 
				
			||||||
 | 
					\min&   &   \sum_{uv\in E} c_{uv}d(u,v)&     &   &\\
 | 
				
			||||||
 | 
					s.t.&   &   \sum_i D_i d(s_i,t_i)&=1    &   &\\
 | 
				
			||||||
 | 
					    &   &   \text{$d$ is a metric on $V$}
 | 
				
			||||||
 | 
					\end{aligned}
 | 
				
			||||||
 | 
					\end{equation}
 | 
				
			||||||
 | 
					\end{minipage}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\newcommand{\lp}{LP\ref{LP}}
 | 
				
			||||||
 | 
					\newcommand{\ip}{IP\ref{IP}}
 | 
				
			||||||
 | 
					\begin{enumerate}
 | 
				
			||||||
 | 
					\item \ip $\geq$ \lp. Given any feasible solution to \ip, we can 
 | 
				
			||||||
 | 
					\end{enumerate}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\bibliographystyle{plainnat}
 | 
					\bibliographystyle{plainnat}
 | 
				
			||||||
\bibliography{ref}
 | 
					\bibliography{ref}
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user