lp notes
This commit is contained in:
parent
e9161135ae
commit
ac419b7e12
65
main.tex
65
main.tex
@ -68,25 +68,56 @@ a 2-approximation algorithm for sparsest cut in treewidth $k$ graph with running
|
|||||||
\scut{} is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in \citep{sparsest_cut_notes} is that shortest path distance in trees is an $\ell_1$ metric. There are works concerning planar graphs and more generally graphs with constant genus.
|
\scut{} is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in \citep{sparsest_cut_notes} is that shortest path distance in trees is an $\ell_1$ metric. There are works concerning planar graphs and more generally graphs with constant genus.
|
||||||
\citep{leighton_multicommodity_1999} provided a $\Omega(\log n)$ lowerbound for flow-cut gap for \scut{}. However, it is conjectured that the gap is $O(1)$, while currently the best upperbound is still $O(\sqrt{\log n})$ \citep{rao_small_1999}.
|
\citep{leighton_multicommodity_1999} provided a $\Omega(\log n)$ lowerbound for flow-cut gap for \scut{}. However, it is conjectured that the gap is $O(1)$, while currently the best upperbound is still $O(\sqrt{\log n})$ \citep{rao_small_1999}.
|
||||||
For graphs with constant genus, \citep{lee_genus_2010} gives a $O(\sqrt{\log g})$ approximation for \scut{}, where $g$ is the genus of the input graph. For flow-cut gap in planar graphs the techniques are mainly related to metric embedding theory.
|
For graphs with constant genus, \citep{lee_genus_2010} gives a $O(\sqrt{\log g})$ approximation for \scut{}, where $g$ is the genus of the input graph. For flow-cut gap in planar graphs the techniques are mainly related to metric embedding theory.
|
||||||
\section{The Research Design}
|
|
||||||
% Requirement : Your research design may include exact details of your design and the information should be presented in coherent paragraphs:
|
|
||||||
% Example:
|
|
||||||
% Research type: e.g. qualitative study, using primary data
|
|
||||||
% Sources and other important details
|
|
||||||
% Research methods: e.g. Questionnaire surveys and interviews
|
|
||||||
% Possible difficulties/ problems or issues worth considering
|
|
||||||
% Data analysis (the specific data analysis method)
|
|
||||||
% e.g. Using SPSS to analyze the survey data and Using NVivo to analyze the interview data (details of the method and reasons for the choice)
|
|
||||||
% The significance/ implications of the study
|
|
||||||
\paragraph{Research type:} theoretical research
|
|
||||||
\paragraph{Possible difficulties:} The technical depth of open problems in \scut{} might be larger than I expected. If I have no idea after thoroughly understanding metric embedding methods and SDP relaxation, I will immediately move to other problems.
|
|
||||||
|
|
||||||
\section{Time Table}
|
|
||||||
% Data collection: e.g. During the program and first 6 months after the program (Aug. 2023- May. 2024)
|
|
||||||
% Data analysis: June 2024- Sept. 2024
|
|
||||||
|
|
||||||
understanding existing methods: 2 weeks.\newline
|
\section{LP}
|
||||||
solving a problem or imporving some approximation: at most 2 months.
|
|
||||||
|
\begin{minipage}{0.47\linewidth}
|
||||||
|
\begin{equation}\label{IP}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \frac{\sum_e c_e x_e}{\sum_{i} D_i y_i}& & &\\
|
||||||
|
s.t.& & \sum_{e\in p} x_e&\geq y_i & &\forall \mathcal{P}_{s_i,t_i}, \forall i\\
|
||||||
|
& & x_e,y_i&\in \{0,1\}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{minipage}{0.47\linewidth}
|
||||||
|
\begin{equation}\label{LP}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \sum_e c_e x_e& & &\\
|
||||||
|
s.t.& & \sum_i D_iy_i&=1 & &\\
|
||||||
|
& & \sum_{e\in p} x_e&\geq y_i & &\forall \mathcal{P}_{s_i,t_i}, \forall i\\
|
||||||
|
& & x_e,y_i&>0
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
\end{minipage}
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\begin{minipage}{0.47\linewidth}
|
||||||
|
\begin{equation}\label{dual}
|
||||||
|
\begin{aligned}
|
||||||
|
\max& & \lambda& & &\\
|
||||||
|
s.t.& & \sum_{p\in\mathcal{P}_{s_i,t_i}} y_p&\geq \lambda D_i & &\forall i\\
|
||||||
|
& & \sum_i \sum_{p\in \mathcal{P}_{s_i,t_i}, p\ni e}y_p&\geq c_e & &\forall e\\
|
||||||
|
& & y_p&\geq 0
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
\end{minipage}
|
||||||
|
\begin{minipage}{0.47\linewidth}
|
||||||
|
\begin{equation}\label{metric}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \sum_{uv\in E} c_{uv}d(u,v)& & &\\
|
||||||
|
s.t.& & \sum_i D_i d(s_i,t_i)&=1 & &\\
|
||||||
|
& & \text{$d$ is a metric on $V$}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
\end{minipage}
|
||||||
|
|
||||||
|
\newcommand{\lp}{LP\ref{LP}}
|
||||||
|
\newcommand{\ip}{IP\ref{IP}}
|
||||||
|
\begin{enumerate}
|
||||||
|
\item \ip $\geq$ \lp. Given any feasible solution to \ip, we can
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\bibliographystyle{plainnat}
|
\bibliographystyle{plainnat}
|
||||||
\bibliography{ref}
|
\bibliography{ref}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user