From 8b8dc60d3410c827492c9f6375ddac0e592cdbb2 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Tue, 13 May 2025 21:17:34 +0800 Subject: [PATCH] how to show that y_i is the distance...? --- main.pdf | Bin 97948 -> 98295 bytes main.tex | 10 +++++----- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/main.pdf b/main.pdf index c254a5414a629cc28008bb246f65402d5f8cd5a8..3f2b04ae13c840ee99ec992f35d97125b39ca9c5 100644 GIT binary patch delta 13021 zcmai)Q+Op&x305-j%}MAt=OG(Y}>ZY6&oGfww-ir+qTtFN2m9{_t`h+;#6JKJ4V$v z=kwI8Sv6{mne_qn`~_9#PXb^|3?M;=;9}!U%zvc;EopB!ZHS@yKC9o_=F>T|Jma=m zwMyObbh_I5cL`+VfI`$G!)7g5xHej7`GAV{wBs1U|B?=ojP^m@yZNu++otU^^V?-#Vuxg-7|m2 z$qoVG0i}xemR+%;i%z*x_EzB2uuUx{$}L)sQdTj9@e3f4Wv%mvqY>sJJws-PPF>i{ zvK%ah2YgoQNEP$rh+z9|Z8**nsUr;B*p5Xkd?hj{LW>K<8fSdxF|@AWz3=z$$3QvE zY0*L1*U-0c%Oxcv~4C8eb&C(#n5x)55%eC2jQe-`d?;IK3g*u3<{j9Zq-odR>R0{IrTb+!)+ncHifU7t9o^ zEd7|6yG>bU?#1C}lX70Czzm1TIDZ1s*d7?nlT{-&nETWO-Oh2z!ZuESn?*_V2}gEu zz&npPF5n|v6hhh*9 zc<4KdqPU+PlH?)ZcA=OP1p?BOxJl0qZEL&=f1~&HdT_>wK@uBNIpeXWC#HeU^6G#H ziB8z#c08Ar{ohju>0CEw*Aw^CI{kS>Fxyl#P;avv{>lrQC={T>cF|td3ag2E)aeDq zcuLVYkD;)zQOTK5JSj*Sh0)OR$0W#^6#c0LqB-f(&7_eZ9bp@{WpE9Fu>K zkH{Vur=E}Ji-|o1@UVOcl_7z??d>2zl0Gho_6gJc)Z`h7=e66@w!?)t7W(c_lbw*^ zcf59@hv**`-C#(ZIyhxHsZ@~kx5A++AX5UKkDwA_m1Vd=>G)2gPNRb%E+8t3F(@tX zt*`mP3^Mh;d3!qdW3%2srxOkAtZnn*!E83fV!g#{opXGehnd5jd5s*@s!f6$=Jk{C z5RflZiKX)-mQK2OYi79S0JU)t0zHc&D$La9m`WC&!Z=_+li5K4|LH4bbc+qEN96pC z3`5*P=V{J^lL2M0AAo=LcMD})I=7v#A9=%6d;@*TpZvV`Je;rtEEc|?h-(xp#>i<0 zrJx6SJSO1J5?U+Z}j z8)^hiV)KHb^lL3CECSl3AjW|b-Z&;h?9vJk!oI0ySnR{Ott9@Nobyjv2xJ*T@J<{y zpyOs1cUZ@jJ53j^9I^hNj11*8S)Q=loDqpt2jTiJD`zOHIeg4=p#aL{K`t5FZS zLGWjT3k|s;$JY4*A#BC6bhEx2uB=bLQN(Kn1yi3<5;65_*rLuk{Gv`Ej3IGP?2_O$ zqiGM?R&WxYv((S=`KI*Lo6tZ`CC8tNr(*NACjKKN?=Q4RdpXKN0gIl=R2~cm zkckET3RJQUx2!Xul}aPD8tfwlC^6G}>o2P4-dh9UOOwniQk@AQRHt!pJw_UL^JtoG zlDLRb(H7iLT8#H8Ey8)7!bR_>GaKmD*(UbzhieSwr(kkiVYm3s566A&`Df>RuTG+f zoRlj5WfB8U7ZWfe&O5ac;_GsXo2*un=#ifrhr~m+dPbI@B&mk`Y2DF7-yGGUC3?oGaYV7>GgXlwD;%kvadB-G4Ea);SO&nafDYK7N6h!jfRJ9V@0lpFg8ywvt z66r9V~L(|r_{(79h)Vy3cFIl zb{Q#-#OWs}i6r*@g!w=$jisR{p4`GJwj$=(x3 zrtLivSu8vG;z{>pZcZqn>pY>d1ERUH~QGNO3{~XoK7JMn+&DbMJ&Wu`03g3qGzJUY+RbPW$L} zEhsdp)R8Y|889u-&hB=?O745C>=vXHyk?W#2y3GQT^}5A#YFX(%{#&Fl z_K^#Sb?m^(#8=q9e%P27pxFGbR213Pw1zuiNp+ffhczp9-+*vW(C$A7WejlHY#egZ zoov)>TieU;gtrL3Pox+oQz-N;b1F@1r4{whc$zJD~d&NwZTr7Rh7ZI#gPh;m4V z-hy~+-)+;ZTJ~&4ic3wG57W9EPb9Bo_~i^gH+QpA_!l;bPR-@d2AE{cK-udbo^!5= z3F}i==1fRzTETToB6lON&M7J=VWZ{rJbgaQS1`BDE|7S7w8WshjYH#$N+zE+aSR^F zG=AGsI@+kzbnx%5@81(jTH2d+E=>hGk4AKL{KVfyLu5Ra%#AAhlosL7b_f?Gn1+O# zg0H@v>j4$cS=DVS(TCS5%R7>b^lVZlM3a%Dqv#9_NGU3&lsR7Aa}6$$2o3`fSD>%j z>OPZq;owQ-*<$VJxM3QSh_;;OMp|@0G8+UNvK`kg#H5eg+Hc>->URl#F}{BzszxT> z&Vo%mym?U7>(H!!&L+nlBtGnLwjl=1*sH;W49$;($V{K8XJ)2Xj?|;o zVw-YgGWKV#Xg2FHm<`#e4X)Jh{~D8Tq~~jIo0_Q5N}4{anm}qea%z5wX4|a*-Fmjz z{~rIoSgv}C7Dcl7cfv+>NJ4eYr12^0z)?zc3m`v#2iYuQjNA3OK_8@@JQ>L{qel8V zu2xyqHGSfF#)AILaT*nMM3;NGz*pkJl1_rEQOn{Ii&!xxE3hTF-kd3!(ZOflt30c< zE=X6Wr)g)UtM}XEj*PFnEtC8S6gkzU>SN4uJsL#LTPQU=Ht2QN$y%N`RFY-Jh#8UA z;z8_}%XB<3#S_`?Y&zPr$4#@Rb0pSim=WJ;4s6X=5b2D4K2+=2 zt5yBDPCqTTURBijFu!~v=Ng&7W7Ji~C(F!$HvDwxvE-9DV1|a7wb=E3{{c9*Q0=2Sog#Q`R!!WlK`9k_Z#pF zWBc7LG*7!qV0i{495Vfp=kYo*9^nOQ@a-F`@9)@WaIJLiPJ+|8t4TEUAk;C;eVeTkDvVftue(UiZJ$EaCVb5nhYown}R=Kx37W>46D zUI1Rmt0KtUm1epCy8V;8My!dO8~O_h28```Q?J$f)|X>qtZy>8aM6GNoL&m0h`Q6X(9UuJ`Y2GN7f3g@FsmP=>BC2{9W(eC#B)=eQGEw zYU1|rmFcd4MmwM)jVxSwI3gY>x8pdMs}hSFzYJO!IcHLiW30L#N+Zx(1yC#Lc$e5e z(!Kre_1|!KrX_?s`0IUaj0cODeil*U_G&<0YIMyzvG{Vh>fXgCT!!)Bb1I_&Ce5Um z(}PsLUO8k2QvFsl7q6V5;O+lIg-pqu8Lc%*aU$Oi` zPv;$nNGT(u9<4lrU+~t-X7l;ymdS)8u(AKkU1rtLVxWond62~_z%Y9Jj~|$?z0Y)N zW@V&`Czdf)%ytt%1Nr;;?C=Rd^L*=rqY3i85y!S zU#G~_?imQ*;9OH3Jx5sHf4_}ITA>AAhgWi+JMwXk>abfsTLt@4kG5>~Z9X?v%Y_9z z9w-_Vk46!CyI|l#s+qSi)E)QfJrocWjz@B?oj8vA4t%T^2fub1-`Q|qUjtVHC>0CV zaWoh}km`2Uu5R5Lm=~F^D0$2!E+QCteMpKrCt9Ph;RS5+ZEK(M!>l%qUqO9IMe;rxaCHJw&LeIX7(5n(l>_kI(Khs>)5! zNNZ3p&uPV;fBYnsjDYa#L40j`E_!sbDY>`QuO&%O!q2+VllYqW$IV%-f~t z|BlW0#G0GxC=WnS^k-xPXJ+}&Kl4Lw>GFcIsJzM$FAH}U8~J_F`o4}l{w<1kUEi7Wm4 zSm3GR*jFEe;5$Zq@Tf@l^dgV~!;j%|Sja_ShU6ke;nckl1&v4AMksRm-wg=!tzpnd zQkyUZ>&Jw-@HUTc#RKB)VL-ElJA!h%apaqU0fdx%bo$J{Fz5c7P@`fOu!2X1Vl{=U zc?6=7yIAHm!kDgybL>X+Vx%*32Pn5?Ym}1F=*UJcRa4LUFat)kAfZ2~$-!r&8puRs z@UIbJXR`Tl99WOptoYb+NVQ_dNOc^10--5044#-PtQmxbC}posFU>((2deX}FA@7Ni25O-$dpudp)H|;bUwb@3@(>^p04=}0MOz3E*I%ouJne3w ztb{qc%sD4_JN2*`@or)h-H6r}Z-lKA2%LT@AQFyOeopFlM<3q~ID$Dt?jD)9b`5D4 z41NdlYhO>lmQc%6EpQUoN&|g0by5<~8avjLm+Yd3qIl&>YR7H6cP1wom~5xge~b?` zyfpttwa1k609Bcio;|=q+BlTn0^Pl}RM`)^j$#7B20KS%6x;JRPdC#xS2x=>Up7sQ z5{uL5hsr0X>!XE;~sC(R5w;2W=+{|kQekF)5eoHa~7j0L!5l%~t*-!QpN-9?!` z`mua8Z_|&<7DBrUe7ya6K4T>i?B)J$_dDo!cOo1Jk6CL1Oy{z0-q3@-M5!~_PkyL$ zfk*#Z%2RbEGp_OexTB1DQ0DtlrY2GFxJ5z^=XmV6mt}ovtaNcuVyt^Y5k-q8dO>tX zHw3vV+(`ast3E>%h|l*)+|k!r)dmaVoEFcrp0!oPfvL#shbbSKbv`*2oRE=nXb=VY zO%M=NuSrOqp^r(dHWY1G;naDQ?mVE#tu+52wx!e;-Gz@YWetyWI{ZM%(!-- zGgPvT(dhMdV%A#0^j(I$+|c&Bli<8zUmG~cd-K4^5-uUzz~k4{<(Wa92lo?xK08l{ zt2=D7Fk}9zo)=YN)uJ&ut{&SJAx&D(^D)~}g^r%y)wxy6cCFilXSd!;)Y0_;f}IcE z>^Wu%W7QR5&eAFzcc3SMhg_fUv1n9txafdph-e@LT0(fo?@;w=#tEw)!qsaC$sr*S ziC#a|PpSD}s^g&I^so`3Qz}?euaScS8>6{+2bVzOBX5EOptsFMsmHN;rBV0yentT7pnKi0(q2<)oRKNY!>t`-{K) zX6hS#>M>=-K^=IEtNF=7Yd{Ayf&~K}g1|x?U7YxlHWL0n2Zb^)Ql3$e@)UaOu@5dS zY(c;&W`}mdd)MGr(M43vvQcM_`_5n2hs2+cH(xMa+W=%DR1dYcrSo?U&X^yda}{j) zZ+1p}OH=I>$*rXw=`cGhv*mVL*vtg`S2AavH3Q;wz;8b&3gbqg~rC<_rV@aL!`r-u=^Wc2s`H9hS&t-V{W z8Na|7Eb5tj;?JyxkCG~d$v;4l^N0)qtMz0O@H?fM>tI%6geGy;+%bn~Oc6bUsU@wn zw5FDox7mL|J?27=Z86vL$21k=EbqlYYFjXQ9ej6vi%pVHgY7T3U zgY5z}O5;K*TrrmFAbZyEh=hwHESfzc*Q7aImh8M1mRsKGMuQPrWZ{9AkU9{IZYOOdLd z9o_yFfiD(^7@3$1ur0_d5ak=*6Pj~)usCEt^tkZRQC5Kg?Sj@F572gyA6(<%r$g;D zMU#@mf0{h8gCKg!Dz7@y426H|C3AL> z2T3Das)Xy^l{^{<lI{bJ1`bu5iIuWb0cu`pDiG5P6Xp5$5Dt>43B{zcCj^R+7(7g%#`JQt?I??Or`}D4GtU#7I3?5+O}V)Bb1%7RI2wNF zB50V+Y9t?02j)JZ?HoC_9NF>@vT$7`#y&&N5sdH;EWXdk$>MlCHXXG<-AHt$F5a_R zk*Lgq9K%Qb>QE$oS`Ph39-_98?T$N-ES9x>R{2)wY|!CrU+xrJf#;BEC`I-`pgJ{e z8&DvVv}j+o{Alk+g~Jzl##ztwRBvo+z)wes01RFJiJU7qD^VatoL?fFh(a~)STT-L zqSQR}2YJE=U*+HG_640dw_m)?I~s~3?Deu?s2S5^F=ba#J4oCXm8emqK5Z|#zq<6oe7SgAVlsPvb{G#kVW{!6|n|x=q;nN zG943nm_>&294@@sy}|h|56sBYJKmg}@;jn7C?Z^EuTBh~C>8==3O&n>U>05-W*d3{ zp%Q6g0X$VBy$b1b1{-UmUI6&rO~cmVsdU7j6sCbaRWd&q?Pje&&+>GKed0zS;Y z4@~AIGYT3_HL(`{Djnt5ND5LAp;k4q4!(|tDFJA484;EP`AOr}3jhTK-MM9f-@g$r#Sm&cxZp$<)yHzsTOm3J%D@ z^g%B9QdCOTQBGV z?r{GjcIO1t!lg2b0MJ{xe*zu>sl4IX2IdK3aMCzK%KQxsBxPYgI z{ENa{FJ%Df;HkBW|1eD+@GqQwQTZq9R|IfEq?T#?^CGAMvLI4>v;pX;|61U0ebE4n zfTv36{W~?U4R8ZbH8A{#+Ij#e2mpJlp&?-R-|=5?PmRpY0>>m{YG>|ZLBht(4E&$! zn6>hT#Pa8K?d(W?N!9P2miucg3equ|G!yVK6OPP+;A(%WVX}m*UmuS*&RQ%fF^C+K z%hOn=%hwa!Gwpx4w-OW>_aYPoP_e?`BIa38GpNPNL~ydXYVK^%h)=B&^G?qbcfo78 z+C&0`s5e6i4MoU;^Uz#`uR?@=fX9Fc;VAHUlO#{j!<;C~v3L}h3ox=Rgs8~^*0sWf zPYE%o`;ArhJjl40fE@9Ge_hCgTFWeS$Pga`l+G}g?jjH}q*Mw-Y@ohTD%x>#u^T~e zQIDh5s!@$QZ*nD;?Fz-IMqs7TU5I>_{gVb615@?O0^cLBh7A#ltZ9HIhk6|Z-+Dk$ zbBcF(-izoV90JzX+lC}WdD`n>if-;G`W?Xvk~CslHVG;ZsN^psXk1j!3!aT93RZ|- z7-5EB-$Y@|MFi0}+Fps*80w)?o{?i}Jp9Y2k7C@E)Nt~Ks0-4j^VkYhsJxZvNOdujC zjQ}aGRWMsg!AQcLP(^tRt3!N4KpRL-0GU&`ET~`r$0-)SEh4(_1>Jx#Ux+*^NrPl6 z%72QLHf-<{m3T0Vg-ctBmpXu?To+81gO0E7Q1Wp$BB`u88I6|$wHgd0zbGsFXI5Sj zx**}F-QxI9-U44RbV(d*?7R@1ZzTbZ6l;PWr@V9}P%LpoS9J$Bsh<5$REZ61hHs|q z>MFtxXu+ zr(f}VVZ51p50ubQUxs&sd>;a1iKjD<8$R)k3mYUR&ZA*-z-5EJLzrGwneEkmk z@}7kqR?d_0N*B8jDn*+OCsDo_a!U%FeRuNGDs_$574Z^smu_@I7>0mpLqg6=30q9; zQ6i(fSjo#_lc-$$_9&mWjDzcPIxtE z9$0~y*!XZ}nGtvKZXK_FR@Y^qx~(Gm$!?x1+81k(yE$Oo>%pDH+wN{5%$lTs$t%}^;EMuV(eJNTDNZ`G&Ow{TW0-;%%U-!Z_adU|j zBdDm@sHl5o^5k<=!sA&utrjub@M=woxfaV>mS~rGE68OW&J_j|DhL|sY@CCk!%s0? zK}-eQdTcRKWHWpBX2JdGv=SIRtA2x3(e(Q;ut+&4+C2t>BIY2%4QeZ$Jdy?y(4PK| z3H8T5R8qaRS;W*fHu{9|f2)2iDmOL=J2nY)<*p9(BovO+a7l}cwCU-RDwreV5fmgh z46kj3vrW{Tu-IY$M%fa90XMMUY@8Wb_q66Z)8PHI)p(wx%`7rfb$Xk(TUl-1aZ=+K zR&+}8;vwGyGKQ?eW9@z@zgy8;_!i&KYR``!Q!{^*uB=H}t%Cd%9S*OwEq5z`(#OcY z{zXZnqSo)NfMB_>dq^NUTj9I9?ThW1qpuq~K_`FKlDQVP0AEHVTvyzNjSQWXsUj)b zXB_E?J|==!^jV1-^-hzF@v1FzbL+!ugXriO2V(*Q60UvV;jd(o`IUwh1*Dp2C|mGh zGabMa8m%L0kjDl0n)0K~>@qv>;VNTdwOT<4U7+eF@bzMT9~A}jj=r;ug$`1%xcS27 zF2GqP1%@{oJFKw$goIc-`$76wtYkM(YNOJV`AMsJ55Us8D3!6yUgG*MNvR?U2{qc% zEywKyq7NSRXd3-(Yt`;2>BG+Wa~-w|H4L{8&2EdZv{@if(zMf3vnpfFFX^MX^XSQfOi_VM8e2#tOn_ zTyFoyrWC}#41WKpu|UP9dJJenXuN=a>B1;qhYs>gpwap`;Y&yiVeL7|J?4Nyb8Pa6 ztEbJ9piQGBkEpMb04LMwe4=Mlx748t{S2}`%x!9!QuZC8jGbj?g#qsBbG=%Cw2ZMF zZ!t~N?gj|Wzw@D@&DdJ^Yn>}wwEIt+3__os_*TL6(8 z2D>27G&i-i-bE$DZNrIcCCGBrs?lR!Bu9u`z>&qehlrw!h_a%6TraCTB;+60oxc~$ zvK3Y@^prNXrH0Z->(Fr-E@WeaXcuo^64KIcz}(2J;> zwdY*wZG@23*nbX(Dv&5jknN9ijg9qBrCnb_BsZP3d0Vr@o`x2C0Tda%IExko-4MD#F>oOWQ_dB~ z{Bt+i1*E7l8C-_>L>*$K3f5%A0;mj#h&JWICuEHLV(MAmtK}qxFR3$lRyQ5a`l3a- z<&`1)(_Rsj3h{oj+vP%)Hm%>?OScb+vah9z-0KN%rXMuVKI&B+Wv) zmQ*_Q$Edb3&PX71Co`fg$6jwJV)!vvU}7O+XnB$H6pengi`9z>y6T<(#!+oFqLSs7 z%ogT@60AVNGBUpq+Z3Zt2wDAN<3claP#<0_9hheen?^ER7un(}L|9D`&jgl+PEe(dEjR;9P~oQ5 z;{%H48Dgmv_+&`^K~Xr0=X(&6JA)jdDB-*gWK!Dka}Q6Zkl0!uIhsQH3$M8)XN*K& zin8kYOHQISvU7~Si(1k*5-7I4($-q$l--bo%VPWmF?w1*3oDnlH1chsnGzt^3`O4p z{i;ixy&}Lm#Q0|~5CnB3QJc4CmpSW_{tO4?`Qms;R~HZ|fHG->qH7dtxGg(kTSU{- z$bI*UkWUx>jxxkZuF%B17>S8PtQq>K`p-a#K^NqxQ6(MBX`>B_S1n~kUXrn5BD37A zS}n(J&&63O`3BR8wFUSn?Rb%aTUNW}sf= z=_r$JO^a;Jf%Z`-fA5owC18mlo)Q)TK7yJ|N&pkkbC~RbO?mDj4B^Y@TIsc11g}b` zLQQ+ysIGbLIAJCfF}WYj=Bho%$djpBzkzL}1>w_g>tLmVK$c|URU+@noCXM!Tc$PAw~%h5 z+BJNW-H}U%iB($s2Gof)YPZjid%oPdKwmRsw?3*WlOqcA)XRjHvEkR!lI}_i7`JqF zQEnqlP^IQT#sl4q=0mlK@>8XZoA*Mo|3Y6A`abBV7jVM+gzr7$2VJw~uzrZTWysA) z&84qnBIu=ZsH%s}PBOE>1oWW;-F{($<2K44H5r*-`Y>kvs0m@ECBc_C z?da(=eGKtUKX%mty|OR>?BC-lG*0yAe06oEOf{p$StI1A3%e@9Op_BG)-d0uKc_yk z)sG6YjyRnBynJ5XxAf$vtNGO6GxSu>A+Km+_W6aP>PReRupy_gp%@06i;lz+sJMwi zPZaMpjcMs@=JOX3SD}-~$1bfNY7)ii8%tWJj~uf%#9t39&odyOzfY$Mw@dzSCW7|} zO*W`2i@Z(P(c_NXBN?^zG$SWms&5Nn&uFFRHZb#;c6_o>WmKxlFwb zPg4WxtGIILK{|c^@pAq8`5EQv^{C%W8F=ixtuyc^eOoPBP!xtNBP!bdh&s0$^z?rA zi8stk?Ah8$FuRy1dcw4{EEvv>RuUI{Lk=7tk>yx`=a^=c6UW7Gm8tFp3E7;;=Ds_5 z-2P2@Enu*e9Djj68_N8*6jantool`{kraGm3|EX! zz&DUx_SE+`a%^MJpz{;nD-Z8yn<9RkAf62=m$b^MxJKnB-~AwC(?vlm2O9)3@H7(0 zA!=+JO(5Kj^GES;Q_R{H#Dx>|fb&fL&>hlYaXMp4hC7jh3~;c-{2zRzIA$kB!*z%jwADqX`4L~fz$(k7#!K{d&M zQsN!#$~T!r?>FKYq|(S=ezA;@B8fRsbS_XH*pP=?z0I_6u0CtkTIyQ4>JksoLe@4C zq-UO04|GV>YUOXv97>-ssnB+8DS&Qlmn_-InY1MvFg2R04y6pfRQztIgx^x?cF=2^ zzKAa%$e6I6*t5b3l1TRPR^o(|yWCrYuvWHf`WkIx0h;IZcVHZNQIF45rEi^o$sM`rCH4(H__6RSD+K zYCReieTh(0(tKY;b$)O0v9<;u3o#@tTjeQ1&e)vTb~eM{P3K5IkrH~21GBLtTVHRh z3I7AzE74riq(0N`I^XWkPtJ~&F(s4@4wV(e*Y(ifoPX!D2zX%|1uiQX*Ui2U{}z+2 zI_^43d1f;e14&{?ic3-_^fk-SocN!DJd}{2#S!VPIDuD{N;cXK1Rf(2r7ut&FE zBK~v&++#>_Pgh2D(ErGtmA>kfdoJ=}rG*(nKB)*@s6xI=LIqggBlqoLjSD5MK$jY5+-)s#&I&w2mKZ?2q+8jD% z>0?g0SBN;YC|y_~&NSK|TtbHO2f8k?VU3;%C}*e&jjx#uBwpS((AC0e^`>V{g}O}C z+4f&=fe35G?rgl)OkQ-S1k?r39krC4Sgn33_>#9aWwr^VoS16*>i5oH&#NCj;DKaD zM4uM64+bvpBOO*{b%^sFb8@qe5-s@;RvF(V&hRw4(qc0MS$?!R3nFq1*vLLi{R{hE8>)g`us!4j-VWoKAv@Xk>F6zEsx|`c@MZ~ zphWzY0>e|;FeTFGqlLzz&A{m*R;`9!Dj8+rf3P}VH%(nw zvL*QpOwB#C=CiA01+E&BUs>+gK0}iH~!w3%2!~lNJsbN1x+_`&2VWH*Dyl9(8b&>g}{VDqDxGudFrv{Z{#)X1f z%}^4nflGxX05TA_E*z7xrI#rQ3oADqlRAkukc5>4_|K_i zZ}0NY$w9(Qq6EhzX=i5t&*JW98;#W8wNK!pSMb zEyBVgCP4E4zeE?|f5(iSlkLC9jB=q<2}2PhWUpJhYZvjGh^VOG5HFIRP|^m%00K!Q z4GCO<1#SYahEfXhE`HT$Dl;<&Yt#53-GLlKWH97R5A~~+yS#J9j3zv5WA-FHYwNzf zaYxoHU83+e_4elkOKdhlrf0P@w*jKI;cnBC?mFb-w&%cd)TaUTYkqSc5E%3x3PC89 zMJRZa;CF%m4lcNnU9P49ST5MoT{f4W*e(OOT=4u3M2v!SQyE5Y*n4O@&lp5bo*|Y1 zGg7xEn1@@ORmEk%Nt@3%N2_`aCNz8uZ}d);EL8%sT9vM#S|y)Z*ERs>9@b_k?<_Ke z1NL>FFHWE#PJkj#5L!|`2pnA@1W%?PLuLRXEnrn3bDArrYNom!WdtMBZ;%bzg=7rUR3&ct3zOj z+(pSn$wq8ZaZxczAxS|+UPT`9`bKSk<}|r1$s&;^K|-}jvPlwz@$dbKAqiQm*4n3E zFIXfmD#|Mg6r~<=jHHTm#+r+?5N#sULah#06Zu|%S^E7aDrwX&_CvJ~e0zL1?YJ+k zm^NSQ2+PGQeWHc5ji-||sq0V5k_K;MbD4wdkY}Lk=Eg;(OxyFKdQHc(-LQ%?aarzJ zk$1bvb#l3gEf8qYos+gEHR&fi`5{B!M4948k@7{MwnMedVFX~oF8{YOtAcEakN>_t zSKO&!DuRQ0osaUtkoBYEZtD|5Q9kVR|E*&eDwYmQikb;{LE>@P8)c<()>JPz?KxVe0z;=O?!PNcN`1-uA4b93GYv#C0 z@p${w14r@Wi9eCvI1snb%=KD;m5+5EjaJ^ZCTw$H_uLSt%HBfk5-33%4ffq5GO1NU z2j`37+i#fmNJWH)-+dAQ%Jc3_xUn{B)`1x!4Wu%Tg7sL|a;9M#6)bS7Q40CNPQ8Wq zP`B^hF=9Wtd4R!d%(enliohP*BuBD(0V;W5-)srn`B)nJPvy|w?Dl5Qn@egW#{BqO zM(UJODH~Z#&KckP{f#cm`tC7JbV~deumGp1X1r1`ZNQiryU&eBmoQYKV-s9JxslO>HG_ttuDa`T(C})2p zcODsc=&15lHYw8w*TS_28|z>?2i>)b$OpsnW^F!>mUU=q7JDFwzJ5o5+d{QD2k)6c zZc;`Jo+*#j*p^k)^^~;54SRo_FHgtA&UZ&<8FeXFQu$IP5pMB`F{t{wKEA9r2dwbB zad_e@^))9M`{qZ=`)dL1U${yi_o^*JLB(MOFx$bYPY|ce7ad#*6w5_yrzcPDuG6!s zP%$&AI;~?=r9xk))gBw}vVz1T!S!y#0kW?K2PcE zr0sB)u2Avd)!~$8*l9j{#h%COBsjVw<0D^HqfuIg4DD}ODls&;ek&P5G$r#C?8_g~8{tdu9E4KWyCy9BTUY0^W@s9d2Q0 z+naqH>34|YRTg2u4myw65_9@ab2)l{xGjz3up{dWstXXxfCA{!i^sa7@1+-WaBZYd z67~gxcW=-LZqH1$mFsJ5=uY*P$6dT7m48VWEgI}Iq!?pZ!mefOv1?*z4BDQ{w1eDy zRf=OXj#+ZyVOP{ASaf;i+V~f3Z?eGe*6rnp`AoR$_1l&_%Vr4rfYAst17Yd{$823`PSO#c5r|T1v{@uDw zJ=8CCrl3@do@I-DMAnpL^m4&7Xm^0wBm9|RG?NQ2_Y>QvEepAN|moCE8I zng?pA5@v6);A<0Hz`c|SM1$OOc8w_k%quYvNL%e}onOGuZBZZy`6msT`j|HJBuoi0 zZ)ZLdE2PU8BP9P$apQZqAoHGy>(y~6wSuqWixKHO(PIAST*AGZe68D%1Pr!& z>uiaeo+^g09q6xkpAAn*sms`fyA|zDIIKT%EZm%0z~k@w`V1axd35g^jW;Nca`LbWQ=zSA6X?dy~rD^e%j@ER9nn-L$7=c2y9FF zUmdQVR6>oZGn?5dydXt!5V?W)pbNHnS`53sJX?v)PE~oNG zYBu2Rtb^g-o3ps07@H3BGDFp0=fffu*!TW6mbBa_`4$8Pp62PDA9^iE+sfTDtlSN6 zfP+*DkSY=OH<$0R;EIv+Qvc1Nc)mKu>9x6^z4VPGuwAVN*V{|Vk`l!M7$figmE9L!ZgN-r$ z^!{t!so@*WFHuW>#rw@qu)&|jHajBcTU&$RpWB0Ocw3)uZ%FT2e6LWTtj^c!Lh`O;}r zb>{71`N=#bnfT@nqhgywU`s6n$sBUTvxec+=8-RY%Us=a)wYq~WsL68fngP-MP$*1 zBP0=!O#5dK$8Zt%wEaZlO#<(az>@HwxArI$1;`-Y1wRH~?iP4G{lap71EN7p7eg=%9 z{bblh!_9OF-4%{NYoVAKS`k5G*HXEVE;~{9&1lT{nBEwRStW^O)4@r$p|?rl9@f z+((9eFTL*LF$s1HT+uii_@{DSOG8uj$WLeRK>rM<_tSt|PcVZgystB}={^wEu!+Bt z-R0B5VNwMKADTP+7#AK?Q-4}LUCz6!Y_-q{5u=T#)Qe(*w zE^{zHsNgT_{$ z6rx0{@jM^E>+H(b9?`{mdY*u50TKE*1l-id*`Io@+KiFnVWf!AbT}oZ5L!h?H^tXtY(3& zKT6Y2Hi|pVPxo>eo{uA>QyZNVjDG4C)i_57P6A7`EPtVE%J1z3I7{?EXH%!a?a*ulxh$bwgFxR%-&YAu?a~ zpTx$|gZFOZRd(XOXVV2UNAZ~mhN?38nhpbbbOaL_SP1~ZIo^Q0{m;y98kyU)j5Q{M zoa-bIA+p&HrL3xE0qE5CNw<zWIXWy6g4(ZG9PSg@U zO@fZ#ofy94qJXfiOj>sOwn9Pr7Zl`6I-gUAj}$++Q130fGT%Dzbu8PR{y>q{#d=3- z%|xo=nrQXUF0L(G!k7#e&Xos~nM`?z@ei%9vHIn8<6Td4@avomac;z4S+p5Nnn-r_ zwR7X)^3v-fM!q|46*eAWOaz3i{pi=ZsEU{ce|{#}MOfnyy%5dD>Y2M`Evfbx*KbIM z5nLj4nZ{rd4`#?lnEOyAI zpIZfCPMM5h=fdO1JBcLD4Y6=|C0gnZ0{|m&iHRK&#QopWZX(0ZVVwgwv~^j$J@zo* z#JzuYf`;jcQLrS62rd2B(L=sk$=&V2VDXy=ar*w+qhKDznl#6m4QC2Kx1PfKX)cb; zBE&>R!s{RkAp)tiVtB-Glqys(Ilmw*c}!VZ?YyG*i(&yi?G$^B#uo{@DiJYswc%zQ z^?DRCl3`ObFlmx+ip22FI=YxQJAx6wj;9`zU;gX2(LtJ{WY8v^zn0Ckr`n?Qd$7A4 z1QPy@uyor9*MKDpY&mW$S~FzXG8z?9LHv z>t)BkKhM>Y3`Q!9MVfY2(ylkT{Q;=?iircVdxSt;SCpNQRK!`D8R(8s4L?p+B(a1V zI*e5cF!{}lYB0(uk~?c0uGVR8cyNTN7^ZBNI|T(E>`jRqN^KpS6&BT$Cm>E%AXitH zRw6Fy?PoTX{TG=zXHB93Lwf6It|5rvuU115V&>UsA*2RuA|+8`5wo-xT5_F);ZNU0 zS19&o66%@AXLXpC#EQn8qs3c?Q=0~w^KQbI!D)N@Gvpw@-$jD#Oavgmyv~)y+l^Xn zn->kg$Bq3AO;5qMLCwK5;)CjxJ_Qs4Zgyv_VI!u{XGah2b$#%w75OWtC~uBUso#?d zie^yS1W7AC*Xp4)cRQ=C{g&=}J6~539?HG&cW&EQr8UJ;&Y<}P|5}2|ja@H~*M`ka zaH064Rpdl&o;Sp0Msw?iqytQ)x6KOHwN9aW-&=L$j*m3a` zPOqYRHQ!6FX!Rw^+v0T3K8wktq0=&bB2@eRqf941{1=F-zQY$tXCV!%P2)p{l3r63 zBWsqwWT25?%buc*lc=Ck0aYv?6Z-q3$&jJED~JE1rPUj(Y==!fuj-s$!|EZ%%v6uX zYsN=rek>JcJg=2xL~;Th8Lg56HgZd|{Gr^TtIigny|nh{E>n;&nL0m+ex493MES}@ zRC~-nz&_A5Pb*r2w+4cF-1(!IWUDIm(~cvRe{s&d6LcM{ho>sidg#1(Op!_M(j&EW z-VYc~HT$qepm|V3G7+1GTmj~H2cGPl2 z3%s-iS7EJKAa%T)U8vVf4SV1B^xr$)KBH6Ui`dGF{YuJlmisv(t?1yVrLNEXD=*1* z&%nKw%_@y5RP{RW6U$H;v@uUBVJ|l>*!ELNjRp(+qSmZRs_+wpHL8}B5W%Ao zzEY5f8g423D^kKaJ|(hVui$`;!2|R^U_Sh$(p@F`MCMdxExGbr%QrvGkjg0imB@>! zTiPJ$;4gg5VMhM&h}Jbo9t7#gSK`Z0HFoNe1M$YqgNc?x+o3_QpTrwec-R6VVbE>U zId!Gx z1!{I+&>Xt#l@P@Y4=-JOni+#M>FLGdbr??_IJw5ZkLnCb9LYOP_}4m|(0)`W{63|@ z6geaduU$4Q?iP&8(lE)-Gh%3ah=Y1~Sk?MDnRHDjPi!e{!#k5QF;-Y# z!LtzHxr(OL1ti3qg|Z(^-&mW^X<@P2HGQq1w8Ch-e3@g?1}Tk-pw5be^S>MNzmf1V zOg8n5anucuKoHP=Y*!F?n(8~%O7r2P^>IA>)e+s44(=zWwq`uNH=M+dv}SpIPG~S0>)rS)3D!wylS;B8Mj>ZEWbx_wfokBKAmx6qV==tS zuD}kv$y%fYM*gXokVSwaa|j!0UvHoXpN59XF1<*MG>3M3OdyJ@$z5c_hmG1NfXTNa zo-!|mh%f!EhmI0JtDSX@(>@@-FwXp1rBUo|NZZin&5t_X+x>%&$UzV9`e(6W5IE+> z_rQ(~(Shh2Y7g(d0nnhM=y+(EBS@CAPGyMvRW0)qX$s?)*|9>;#@anaAr~YS;U7t6 zI7%u%ni%hIuHN5DyqROXX@q$EPE85opXN$ViKDY_sNvnzW|uxbmrM8i8+XLlev;ea z#MJ9^)kX@crg}^2|0Q%A@t8N;QU<5~kktPmbc6StH``WD4V2VJA##)cM|PB@fp2>| z^45wW!nE+z8mx`cRMJw#3A{ry#=k$`N-Dq`nw-v#ihVnIDZ#fyL2CugZAQy;M$6|{ zFMN(%Pr?b7;H^`~;Hfm{HVBC*c?(Je{br<%3?2%oURff+C^Kt}5f&XF*jEFmeq`r^ zt2(LP-f9YPWZ(>S8MvcRj*?=)lHfFLE&6d5XhuMPoyzi5zZ%!97z;3ys{F`eR(Sp+ zwR;K*`T6W*5rtt574x%^m5LYX3371NX9)&dn&ESH)+mh9=HlH()H!Ki(0bJoMLC1M z|LdxMjLRced~e`mHIp}r4m_JM4mf2mE?JzD?`w!=^o&+QK|5}af}ZGXss47Grq!0I z_rtOBTK8SW#A!}v+Q;5=?9J=MfW1e<`!F#-G9v(~p=YIwnbtgOzNRV9Ibvu%eQ~;L59ZBrEOM6Pme`AgvNvt}$#%^8!=pV$a z`@9Z<`{%PGiBXsG@&E(H!p)t!LkYla$_D^`zyetQL$I1S;Q>N$|Kp6&6p0Ryhx@O0 z(*+*j77@VN^v?(b4w9MsKj$>TGXgvi04z-bT!21=cr?r=Em6Q7AXQ8hfYD?q4tRk~ zl@tGWft?fp3My4w>Yp}97T^k*>L~jUA}9cUL8d;+|AUQ60Bp$AJf(lO+bRG~sMHCS ze_A>XKqgcwjs^fD)m93?--N9L7=lb4)c&`1r3Y|_Ox@7?2fYjdU!YRW4gbM-W56U7 zfIaoQIe-R*8G%X8%-+J)l7yY>U!?z?_2^o;tZAgYR~iPyDi?+|IjCl5C)kd;?=qyE zb6vQXk^ocCRH2dm8`ryjO!`4kIwnffs%Fu`zv}+w_ZWiu=?t$Jd=u`7KNLq}2Q*SM zKF(eYPjqDuuXA+`$3c+H@f2Mmh5xz~LM{BtZzKlf`%CZ(F6Q4lmNG#k#RvsA_G+Dr zkWn1f_k~ymV{`rPT%2uZ=OWT(dJGmfQM8Mao`#dz;rQ??Yn)!< zyl6LGtK;5Nb^&cmu@8F?$wa&obmlY>9Nbj|8xXNyCgQvFH>B%IxIPG)?hLg8Tp@WW z6?s|jz2J57U$Ut5VX^}~?9~_%PbA{12zuyJqgs$(s1@>~Da>&EN$BvK6K3Opd2FP) zg-JdIs5%Mh@iG#GaRnJ*K8hI*sY+7W~QM8qk;RED*dwL#-j!WP+D*nq-C zVVC8o2MTAcH*VyC9=ucu&l4xOLq#=)<2@S8Z(D;$=G|?TQ`Lb19`EhVa`FXP*%Fu?eWm zU*le>j4nT)sJ&z?^kgJhenk%vb2eb;6#~kPqos`;nm9FNiuYF=t&yhE@wKXE=n9Wr zUx%x|1-g_E!m+Jt$6bKe75WqkpPhI|RL}Y@F6tEs^^n)WItWv>`no7Q;9#{SjX)3B z7P~oYBeKHgHg(;v$ayy+Yx&Nz6sSZL=V7xDd#eVLS1bE{Ylz{^Fos+Fq$k18;%NJC zZRXw4B2tfGd4ye^%$V@4ksM0XU&6jul{iF@o|`SBtLkojWBH-~ zJQtMi43lMnO#|Jy%R{^f``p{_$%wI5jJ%S?@*9$#q2Wb+v(%4eg{e6rAM{OBM%}_N zW!!dW>I;bNddwxw(|T*l~wd5NoRE?qtT5l1w_JmSk^k0^h2@;jcKz`&NZ zdf|er3ErXn8THof{RX4q$%5q5&FmSSL}!G#FllfAocpxMXH%{cDGAST4}w;4A}39t z#zo)Xziq>}Z`M4F<$Q&6jE$%ksY?7Xud3^juTZ1%WfYW_bmIH zuzxG9L%WOWm28v}_D-L*D@>Im0f0s|xa3+X;#r6Jcm#`5q9ONjexq?%HV?J7H|f#0 zJGtO&^Z6<~Bnx>SLcdndHyB~X6)pL~5V{P zPu*B<6aH%e6&owq4}qO8r0He$G{R_{JK`z{KCn2RvNJSjU3@Ai=$X4H)vrEl_{re* z3tklA4`jXV)la_>Y@(gGO;>U{^ zHd@P4GGJlpHvEjfsU~z7y-jkEtP~OWp0r%{2MMLDhR_t4u#62eFYoy7-qr|=`_fcX zdx29Id4DEPI~s$joujIYSwxH^(w;vtoneo`8A*#2A&Q!FvVBk3ad1$^KkEWk0w_K@ zT|!ym<(dHVhPcIP%ZgU3c^6h>?dgEGho2r9ztb&I}fkzGT$Z5Ch(So z_peyL$}A1!Bl>8&r7|mfer}DuVa{JmF^ehHCP;}XNRz_Wzn@su zEDh$P1a3arHqcIh_Zq_rWp{N*X&Te|M2ccc@;Rj`6oqYCk6}mIjZC@z5O%BhlOOz0 z1HC-pntk^pNb(|xgEAGt`!m25GA(SF_bY}l1*Z8JSAqs)V*!&Q)5Mi7^vqlc!DuX2 z7>Y{ahw+Ll;$KZhYo!AsL15-^bp5?>*@ATk%K9`*|GWDD2A7@C)$3FaHwbIOQHx-; z9))pi7lJx0C_A7Dhj*l6GxMJJ@VVMGIW;X`dm<@>-L&lR1V;9jhf9B zw_chNa+ewde`apMjrUj4n|{M6yM{E{vs)_zVXc^%)7hJD)-3trGU>LKG*L_I5c8%> zL5=u{Yjli2If-paDbXtz%>4GrGyNuQroV2Cszdw0V=ZAD^qP)v!U1&CjTB9KN{^Bwh#zwblh5 zPEE>4i4N|o>5AmF8$bhN=Rn2m%yurX$F(U`rrNTR^1j3#BW|MKJzTt17#odzQDaI_ zWm+%^i_MgL?qLn@!u$mbG|h$l56l??6Op%(Awal!F0WTxh=~=GsdQUCBvh)SJ-!{9 z`iwX54I%9UkvO)|0!zN9$V)wmT%#r(RMAp$lL^|A;V>~= zX?jmt%7=tTAVw@7@IcC7@qHh9<*eF#VD<&88ki@_lSH710T#3&!kLZ>B-ce`)kPA_ym>KXN&{AeM3(m6wKNQuQ?(6-9+?cyDYwDV zsM3LMA6R`$0}Ijgk=K@tGb^S^n)lTe&OpXC^OW8Ty8_>NQ5br{%Ki@9i=W@WrUHm^tpS-*MSaYi;Av+qwF6VjcaiT_@yn;Ym z-<4ywwxd|PV(-qxiN+cE-d;YQPU`Y=P;cpYC#mlL7(iMX9$C{mCGoo})iW_uxGH*W zH*>V;*gK?&1fR3HL926Xn~q=fE;C&!#N>Ru+(uTk2nFr>vU)zbUQr3=MAw0>g*Mr7gdN|8jL&#Q@~%13VL+~oD6Bo3zY7paMlR;bHU0ujT)U~ z7;Gd~=p(uMJzCHvE@K7J5nzG)Y<)E{5jCc^4`>XcBD{GfJGa&?Z_3TlW3u$7^EIn} z_*{EKeI43jni{=kuqMGQp7H`=LA|FrY#5Jkoo9PHeP;t|t0!;ioaC7GP2H#M-fC;q z)X@gGeB3gZ-!^AACMYq|*u2$c9ozxQU!O)|^N`yQ>Ig77!6Yj@d!mjiRK&-;M>heCc(Kt&Rz8Nf_9Ysfa7{ zpmv+%4Kh=CW(AkFDwgHaSt^u!jMcw@>eDx@HfTBZO@(f-VEQ4U{3x%==T|pMHyEe% zs8ly2>ah6J?&*Hnd$4+pAf<*cG~uV9)k-oL7A{^YTr7sKv6g-l5MoSNP3+PvF9_L? z-k<~NP`M0{E4g{dn=A1%Ab(Sn>Eul&*z#cD^~V~x;|KR{clbO#Gn^Yn@IICC?(4}y zM5=S;WdfD%M&cC)`J68q2lvakcX^?0IN;yCH6fvA6k_f!RN#?Qm+{snpxETmofMr9 zYAz8*hJa`LP?mxUFh1TS37kLn-IBrbDRNa8bcg!9icOt1oUgJk2^Qh6TyjVAR=6F^ zQGb!i_S0idTgkVUXCBQBBb=S$n2Gx;3Gyx)&HviW_j^z3+P@BR6;nhM5q>clIUkPcHkOCR*%X2!&sd7R>Zh zauiSUAKnY@D{hAw6^@ZrYpa(<$*i z@J{zwt7NCE@641r_9U6U+=WATNKaFC) z>w_k~IJf3dPGscn+t%(_ab#&6s0%YWQXSpWZm`;}Rln{9EaiI&WN_eRmp@NoDS2lm ztF1@jW2$WpGh9$t#vX`kYi!|E*T05e*no#~>YU==ov*IMIXcL`G7Ay^cFNAlK1$T) zKU!wwD{w}pH<%oh7fvQ#=gx)6FcNes+QM}9PLM}6hnq^=e%y;aTrz4ROgw|tN7YSE zE}s5*-JCBw+zFT{<{scH#&{7Q{;~TCH%>KBT-%y?HmuBD(Xyu4x>fcrc4<<=6D>Jd zJ~1ml%XN`rpMY-DmGWw)^O~j6-1b8PyMp((0=iuocD~P&Scp;wL45EJMEqX&bSO7I zf~LR26>%#$^-HY4$F3?!%$L+1F90ThBlW=x5D3G<$;!>fmHNXQK=^;~Z*M?74m$#q zgq5?4D+$~G>%_6LvZXpm0cgQ~ak7ZL%xJ-v&saY7u<~^^I>OL3oHL(!`B#lh%Ri6>ID}9H6#70*%<~=6=6_z4XBX3Hg(OwtkcZFQ&ipY+nM;szeP2wgiL+Sc1_W(y6?%$>?Ot()DKX1?#$nu!=f zQPwJkOB)-4S$^84>BMyJ9I6%b&+|C`FOv2vh!yf~NB_wWN$RjK00+#akHDmALbBM4ov$2Q@3y}Q(P4toeZxa;6!TsOVQ_jjNsw!g+Tz4?hJr!(2 z`I5@`X?9a<1c=ZwkRi~(MWm#nxY@GL1Z)}mL0C+(I~ngTm$Ll$i9(o$E8+Q(F~ZdL z_>k>0r9C!o%f>b~{^zlSMPI69az9Quz-B5f{X2o)?y73hMKzRnOJn~$62q0hjbfU6 zFQeyh!;oAX*a-Ffr{6RJw`Gv~GAisg$=5)XjZ`_MclIu5r)8o5J-YkR$%kO){aRFe!cY z;Uh3~!>jC8Z-!agfkEn)r|GrB4JO460Y-JxBpD$Mf`21`()@Xu;XRBHjE^1zkj-sD zXC7k>11tl0{TsSU0bH3S5bzPuSkx;+`Y7~!dbQ$Vclp>esWd9=^kq#*->MO8swY+2 z^)OX2Rp&)!61}|Ap9>KhcAr) diff --git a/main.tex b/main.tex index 9fb36aa..03903f4 100644 --- a/main.tex +++ b/main.tex @@ -19,8 +19,8 @@ % \paragraph{Research problem} What is the best possible approximation rate of linear programming based approximation algorithms for \scut? What about algorithms for planar graphs? \section{Introduction} -% Requirement: The introduction may have the following parts: -% Establishing the importance (Background), +% Requirement: The introduction may have the following parts: +% Establishing the importance (Background), % literature review (previous research contributions) % Gap/the specific problem % The present study (the research topic, the research purpose ) @@ -40,7 +40,7 @@ In other words, \nonuscut{} finds the cut that minimizes its capacity divided by \subsection{importance and connections} -These problems are interesting since they are related to central concepts in graph theory and help to design algorithms for hard problems on graph. One connections is expander graphs. The importance of expander graphs is thoroughly surveyed in \citep{hoory_expander_2006}. The optimum of \expansion{} is also known as Cheeger constant or conductance of a graph. \scut{} provides a 2-approximation of Cheeger constant, which is especially important in the context of expander graphs as it is a way to measure the edge expansion of a graph. \nonuscut{} is related to other cut problems such as Multicut and Balanced Separator. +These problems are interesting since they are related to central concepts in graph theory and help to design algorithms for hard problems on graph. One connections is expander graphs. The importance of expander graphs is thoroughly surveyed in \citep{hoory_expander_2006}. The optimum of \expansion{} is also known as Cheeger constant or conductance of a graph. \scut{} provides a 2-approximation of Cheeger constant, which is especially important in the context of expander graphs as it is a way to measure the edge expansion of a graph. \nonuscut{} is related to other cut problems such as Multicut and Balanced Separator. From a more mathematical perspective, the techniques developed for approximating \scut{} are deeply related to metric embedding, which is another fundamental problem in geometry. Besides theoretical interests, \scut{} is useful in practical scenarios such as in image segmentation and in some machine leaning algorithms. @@ -63,7 +63,7 @@ For \nonuscut{} \citep{leighton_multicommodity_1999} only guarantees a $O(\log^2 \citep{arora_expander_2004} and \citep{arora_osqrtlogn_2010} further improved the approximation ratio for \scut{} to $O(\sqrt{\log n})$ via semidefinite relaxation. This is currently the best approximation ratio for \scut{}. There is also plenty of research concerning \scut{} on some graph classes, for example \citep{bonsma_complexity_2012}. One of the most popular class is graphs with constant treewidth. \citep{Chalermsook_2024} gave a $O(k^2)$ approximation algorithm with complexity $2^{O(k)}\poly(n)$. \citep{Cohen-Addad_Mömke_Verdugo_2024} obtained -a 2-approximation algorithm for sparsest cut in treewidth $k$ graph with running time $2^{2^{O(k)}}\poly(n)$. +a 2-approximation algorithm for sparsest cut in treewidth $k$ graph with running time $2^{2^{O(k)}}\poly(n)$. \scut{} is easy on trees and the flow-cut gap is 1 for trees. One explaination mentioned in \citep{sparsest_cut_notes} is that shortest path distance in trees is an $\ell_1$ metric. There are works concerning planar graphs and more generally graphs with constant genus. \citep{leighton_multicommodity_1999} provided a $\Omega(\log n)$ lowerbound for flow-cut gap for \scut{}. However, it is conjectured that the gap is $O(1)$, while currently the best upperbound is still $O(\sqrt{\log n})$ \citep{rao_small_1999}. @@ -120,7 +120,7 @@ s.t.& & \sum_i D_i d(s_i,t_i)&=1 & &\\ \begin{enumerate} \item \ip{} $\geq$ \lp{}. Given any feasible solution to \ip{}, we can scale all $x_e$ and $y_i$ simultaneously with factor $1/\sum_i D_i y_i$. The scaled solution is feasible for \lp{} and gets the same objective value. \item \lp{} $=$ \dual{}. by duality. -\item \metric{} $=$ \lp{}. It is easy to see \metric{} $\geq$ \lp{} since any feasible metric to \metric{} induces a feasible solution to \lp{}. In fact, any solution to \lp{} also induces a feasible metric. +\item \metric{} $=$ \lp{}. It is easy to see \metric{} $\geq$ \lp{} since any feasible metric to \metric{} induces a feasible solution to \lp{}. In fact, the optimal solution to \lp{} also induces a feasible metric. Consider a solution $x_e,y_i$ to \lp{}. Let $d$ be the shortest path metric on $V$ using edge length $x_e$. It suffices to show that $y_i$ is the shortest path distance fron $s_i$ to $t_i$. Suppose $y_i\leq d(s_i,t_i)$... \end{enumerate} \bibliographystyle{plainnat}