testing my sans math template
This commit is contained in:
7
main.tex
7
main.tex
@@ -1,5 +1,6 @@
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage{chao}
|
||||
% \usepackage{chao}
|
||||
\usepackage[sans]{myctex}
|
||||
% \usepackage{natbib}
|
||||
|
||||
|
||||
@@ -64,7 +65,7 @@ For graphs with constant genus, \cite{lee_genus_2010} gives a $O(\sqrt{\log g})$
|
||||
|
||||
\section{Approximations}
|
||||
Techniques for approximating \scut{}.
|
||||
\subsection{LP $\Theta(\log n)$ - \nonuscut{}}
|
||||
\subsection{LP \texorpdfstring{$\Theta(\log n)$}{θ(log n)} - \nonuscut{}}
|
||||
|
||||
\begin{minipage}{0.47\linewidth}
|
||||
\begin{equation}\label{IP}
|
||||
@@ -149,7 +150,7 @@ The gap can be improved to $\log k$ through a stronger metric embedding theorem
|
||||
I believe the later method is more general and works for \nonuscut{}, while the former method is limited to \uscut{}. However, the proof in \cite{leighton_multicommodity_1999} may have connections with the proof of Bourgain's thm? Why does their method fail to work on \nonuscut{}?
|
||||
\end{remark}
|
||||
|
||||
\subsection{SDP $O(\sqrt{\log n})$ - \uscut{}}
|
||||
\subsection{SDP \texorpdfstring{$O(\sqrt{\log n})$}{O(√log n)} - \uscut{}}
|
||||
This $O(\sqrt{\log n})$ approximation via SDP is developed in \cite{arora_expander_2004}. This is also described in \cite[section 15.4]{Williamson_Shmoys_2011}.
|
||||
|
||||
\begin{equation*}
|
||||
|
Reference in New Issue
Block a user