What is a group?

Posted on October 13, 2025 by Yu Cong

Definition (magma). A magma is a set M with an operation \cdot that sends any two elements a, $b \in M$ to another element, $a \cdot b \in M$. The symbol \cdot is a general placeholder for a properly defined operation. This requirement that for all a, b in M, the result of the operation $a \cdot b$ also be in M, is known as the magma or closure property.

Definition (semigroup). To understand semigroup, you need to know magma...

Definition (magma). A magma is a set M with an operation \cdot that sends any two elements a, b \in M to another element, a \cdot b \in M. The symbol \cdot is a general placeholder for a properly defined operation. This requirement that for all a, b in M, the result of the operation a \cdot b also be in M, is known as the magma or closure property.

... Now you know magma, let's see the definition of semigroup.

 (S, \cdot) is a semigroup if it is an associative magma.

Definition (monoid). To understand monoid, you need to know semigroup...

Definition (semigroup). To understand semigroup, you need to know magma...

Definition (magma). A magma is a set M with an operation \cdot that sends any two elements a, b \in M to another element, a \cdot b \in M. The symbol \cdot is a general placeholder for a properly defined operation. This requirement that for all a, b in M, the result of the operation a \cdot b also be in M, is known as the magma or closure property.

... Now you know magma, let's see the definition of semigroup.

 (S, \cdot) is a semigroup if it is an associative magma.

... Now you know semigroup, let's see the definition of monoid.

A monoid is a semigroup with an identity element.

Definition (group). To understand group, you need to know monoid...

Definition (monoid). To understand monoid, you need to know semi-group...

Definition (semigroup). To understand semigroup, you need to know magma...

Definition (magma). A magma is a set M with an operation \cdot that sends any two elements a, b \in M to another element, a \cdot b \in M. The symbol \cdot is a general placeholder for a properly defined operation. This requirement that for all a, b in M, the result of the operation a \cdot b also be in M, is known as the magma or closure property.

... Now you know magma, let's see the definition of semigroup.

 (S, \cdot) is a semigroup if it is an associative magma.

... Now you know semigroup, let's see the definition of monoid.

A monoid is a semigroup with an identity element.

... Now you know monoid, let's see the definition of group.

 (S, \cdot) is a group is it is a monoid such that every element has an unique inverse.