
1 Better Distortion with Distribution
There is a well known lowerbound for the distortion of embedding a metric space (X , d) into ℓ1.

Theorem 1.1 For any metric space (X , d) on n points, one has

(X , d) ,
Ω(log n)
−−−−→ ℓ1.

For ℓ2 the lowerbound is still Ω(log n) 1.
Recall that we want to find a (O(k), (1+ ϵ)c)-outlier embedding into ℓ2 for any metric space

(X , d) which admits a (k, c)-outlier embedding into ℓ2. If we can do this deterministically, we
actually find an embedding of the outlier points into ℓ2 with distortion O(k), which contradicts
the lowerbound. This is not true! The log k factor is required by SDP and only expansion bound
is needed. We do not have to bound the contraction part. However, maybe we can do O(k) via
embedding into some distribution of ℓ2 metrics.

Expected distortion Let (X , d) be the original metric space and let Y = {(Y1, d1), . . . (Yh, dh)}
be a set of target spaces. Let π be a distribution of embeddings into Y. To be more precise,
for each target space (Yi, di) we define an embedding αi : X → Yi and define the probability
of choosing this embedding to be pi. The original metric space (X , d) embeds into π with
distortion D if there is an r > 0 such that for all x , y ∈ X ,

r ≤
Ei←π[di(αi(x),αi(y))]

d(x , y)
≤ Dr.

Note that if we compute the minimum D for all x , y pair and take the average, the resulting
value is called the average distortion.2 There is an embedding into ℓp with constant average
distortion for arbitrary metric spaces, while maintaining the same worst case bound provided
by Bourgain’s theorem.

The outlier paper (SODA23) also embeds (X , d) into distribution. We call this kind of
embeddings stochastic embedding.

Lemma 1.2 Let π be a stochastic embedding into ℓp with expected expansion bound Ei←π ∥αi(x)−
αi(y)∥p ≤ cEd(x , y). Then there is a deterministic embedding into ℓp with the same expansion
bound.

Proof: We define a new averaged embedding α∗(x) =
∑

i←παi(x)pi. Consider the expansion
bound for α∗.

∥α∗(x)−α∗(y)∥p =
















∑

i←π

pi(αi(x)−αi(y))
















p

≤
∑

i←π

∥pi(αi(x)−αi(y))∥p

=
∑

i←π

pi∥(αi(x)−αi(y))∥p

≤ cEd(x , y)
□

1https://web.stanford.edu/class/cs369m/cs369mlecture1.pdf
2https://www.cs.huji.ac.il/w~ittaia/papers/ABN-STOC06.pdf
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Note that one cannot derive contraction bound for α∗ from the stochastic embedding. So
the distortion may not be the same.

Example: Random Trees Consider the problem of embedding some finite metric into a
tree metric. We can get an O(n) lowerbound via the unit edge length cycle Cn. However, if
embedding into distortions is allowed, we can do O(log n).

Theorem 1.3 (Bartal) Let (X , d) be a metric space on n points, let DT be the set of tree metrics
that dominate d, there is a distribution π on DT such that (X , d) embeds into π with distortion
O(log n).

Is there any other known result on expected distortion of embeddings besides Bartal’s
theorem?

2 Stochastic Embedding into ℓ2

We first ignore the outlier condition and see if stochastic embeddings break the Ω(log n) lower-
bound.

Theorem 2.1 (Bourgain) For any metric space (X , d) and for any p, there is an embedding of
(X , d) into ℓO(log2 n)

p with distortion O(log n).

Bourgain develops a randomized algorithm that finds a desired embedding.3 Can we get
better expected distortion by repeating the algorithm and uniformly selecting an embedding?
For the ℓ2 case, the embedding has the following bounds:

1. Expansion. ∥ f (x)− f (y)∥2 ≤ O(log n)d(x , y)

2. Contraction. ∥ f (x)− f (y)∥2 ≥
d(x ,y)
O(1)

The contraction bound is almost tight. Let K be the dimension of the target space. For the
expansion bound, we have

∥ f (x)− f (y)∥2 =

�

K
∑

i=1

| fi(x)− fi(y)|2
�1/2

≤

�

K
∑

i=1

d(x , y)2
�1/2

=
p

Kd(x , y)
= O(log n)d(x , y)

One thing we can try is to tighten the second line.

3The expansion bound always holds. The contraction bound holds with probability at least 1/2. See https:
//home.ttic.edu/~harry/teaching/pdf/lecture3.pdf
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Bourgain’s construction:
m= 576 log n
for j = 1 to log n:

for i = 1 to m:
choose set Si j by sampling each node in X independently with probability 2− j

fi j(x) =mins∈Si j
d(x , s)

f (x) =
⊕log n

j=1

⊕m
i=1 fi j(x) for all x ∈ X .

We want to show that for any fixed x , y ∈ X and j,

Pr[| fi j(x)− fi j(y)| ≤
d(x , y)

polylog n
]≥???

One can see that our desired event does not happen with high probability for any pair of
x , y . Let the original metric space be a line metric with n points. x , y locate on two endpoints
of an interval and the rest n− 2 points locate on the middle of x y. Then our metric in the
target space | fi j(x)− fi j(y)| is a polylog n factor smaller than d(x , y) if and only if both x and
y are selected in Si j, which happens with probability 4− j. This example shows that Bourgain’s
construction is tight up to a constant factor for some metric space.

3 Grid
Recall that we need an algorithm that outputs an embedding which extends a (k, c)-outlier
embedding into ℓ2 and we want the extended embedding to have a good (expected) expansion
bound.

Conjecture 3.1 Let (X , d) be a metric space such that |X | = n and α : X \ K → Rd be a (k, c)-
outlier embedding of (X , d) into ℓd

2 , where K ⊆ X is the outlier set. Then there exist an embedding
β : X → Rd such that β completes α and has expansion bound

max
x ,y∈X

∥β(x)− β(y)∥2

d(x , y)
≤ O(c
Æ

log k).

In their bi-criteria approximation the dimension d is not important and therefore is consid-
ered as a fixed parameter. Conjecture 3.1 provides more tools than theorem 2.6, i.e. we know
the coordinates of non-outlier points in the embedding β and we can use coordinates in Rd

instead of simply mapping non-outlier points to outliers.
A common and powerful method is to use grid. We divide Rd into identical hypercubes of

some sidelength s and working with grid cells instead of points. However, this method often
involves the dimension d, which is not desirable...
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