
1 Better Distortion with Distribution
There is a well known lowerbound for the distortion of embedding a metric space (X , d) into ℓ1.

Theorem 1.1 For any metric space (X , d) on n points, one has

(X , d) ,
Ω(log n)
−−−−→ ℓ1.

For ℓ2 the lowerbound is still Ω(log n) 1.
Recall that we want to find a (O(k), (1+ ϵ)c)-outlier embedding into ℓ2 for any metric space

(X , d) which admits a (k, c)-outlier embedding into ℓ2. If we can do this deterministically, we
actually find an embedding of the outlier points into ℓ2 with distortion O(k), which contradicts
the lowerbound. However, maybe we can do O(k) via embedding into some distribution of ℓ2

metrics.
Let (X , d) be a finite metric space and let Y = {(Y1, d1), . . . (Yh, dh)} be a set of metric spaces.

Let π be a distribution on Y. The original metric space (X , d) embeds into π with distortion D
if there is an r > 0 such that for all x , y ∈ X ,

r ≤
Ei←π[di(αi(x),αi(y))]

d(x , y)
≤ Dr.

SODA23 paper also embeds (X , d) into distribution.

1.1 Example: Random Trees
Consider the problem of embedding some finite metric into a tree metric. We can get an O(n)
lowerbound via the unit edge length cycle Cn. However, if embedding into distortions is allowed,
we can do O(log n).

Theorem 1.2 (Bartal) Let (X , d) be a metric space on n points with diameter ∆, let DT be the
set of tree metrics that dominate d, there is a distribution π on DT such that (X , d) embeds into
pi with distortion O(log n log∆).
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