
1 Better Distortion with Distribution
There is a well known lowerbound for the distortion of embedding a metric space (X , d) into ℓ1.

Theorem 1.1 For any metric space (X , d) on n points, one has

(X , d) ,
Ω(log n)
−−−−→ ℓ1.

For ℓ2 the lowerbound is still Ω(log n) 1.
Recall that we want to find a (O(k), (1+ ϵ)c)-outlier embedding into ℓ2 for any metric space

(X , d) which admits a (k, c)-outlier embedding into ℓ2. If we can do this deterministically, we
actually find an embedding of the outlier points into ℓ2 with distortion O(k), which contradicts
the lowerbound. However, maybe we can do O(k) via embedding into some distribution of ℓ2

metrics.
Let (X , d) be a finite metric space and let Y = {(Y1, d1), . . . (Yh, dh)} be a set of metric spaces.

Let π be a distribution of embeddings into Y. The original metric space (X , d) embeds into π
with distortion D if there is an r > 0 such that for all x , y ∈ X ,

r ≤
Ei←π[di(αi(x),αi(y))]

d(x , y)
≤ Dr.

SODA23 paper also embeds (X , d) into distribution. We call this kind of embeddings
stochastic embedding.

Example: Random Trees Consider the problem of embedding some finite metric into a
tree metric. We can get an O(n) lowerbound via the unit edge length cycle Cn. However, if
embedding into distortions is allowed, we can do O(log n).

Theorem 1.2 (Bartal) Let (X , d) be a metric space on n points with diameter ∆, let DT be the
set of tree metrics that dominate d, there is a distribution π on DT such that (X , d) embeds into π
with distortion O(log n).

2 Stochastic Embedding into ℓ2

We first ignore the outlier condition and see if stochastic embeddings break the Ω(log n) lower-
bound.

Theorem 2.1 (Bourgain) For any metric space (X , d) and for any p, there is an embedding of
(X , d) into ℓO(log2 n)

p with distortion O(log n).

Bourgain develops an algorithm that finds a desired embedding with probability at least
1/2.2 For the ℓ2 case, the embedding has the following bounds:

Expansion ∥ f (x)− f (y)∥2 ≤ O(log n)d(x , y)

Contraction ∥ f (x)− f (y)∥2 ≥
d(x ,y)
O(1)

1https://web.stanford.edu/class/cs369m/cs369mlecture1.pdf
2https://home.ttic.edu/~harry/teaching/pdf/lecture3.pdf
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The contraction bound is almost tight. Let K be the dimension of the target space. For the
expansion bound, we have

∥ f (x)− f (y)∥2 =

�

K
∑

i=1

| fi(x)− fi(y)|2
�1/2

≤

�

K
∑

i=1

d(x , y)2
�1/2

=
p

Kd(x , y)
= O(log n)d(x , y)

One thing we can try is to tighten the second line. Recall that for each dimension i a random
subset Si ⊆ X is selected and the value of fi(x) is mins∈Si

d(x , s). We want to show that for any
fixed x , y ∈ X and any dimension i the event that distance | fi(x)− fi(y)|2 is much smaller than
d(x , y)2 happends with high probability.
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