1 Better Distortion with Distribution

There is a well known lowerbound for the distortion of embedding a metric space (X, d) into ℓ_1 .

Theorem 1.1 For any metric space (X, d) on n points, one has

$$(X,d) \stackrel{\Omega(\log n)}{\longleftrightarrow} \ell_1.$$

For ℓ_2 the lowerbound is still $\Omega(\log n)^{-1}$.

Recall that we want to find a $(O(k), (1+\varepsilon)c)$ -outlier embedding into ℓ_2 for any metric space (X,d) which admits a (k,c)-outlier embedding into ℓ_2 . If we can do this deterministically, we actually find an embedding of the outlier points into ℓ_2 with distortion O(k), which contradicts the lowerbound. However, maybe we can do O(k) via embedding into some distribution of ℓ_2 metrics.

Let (X, d) be a finite metric space and let $\mathcal{Y} = \{(Y_1, d_1), \dots (Y_h, d_h)\}$ be a set of metric spaces. Let π be a distribution of embeddings into \mathcal{Y} . The original metric space (X, d) embeds into π with distortion D if there is an r > 0 such that for all $x, y \in X$,

$$r \le \frac{\mathrm{E}_{i \leftarrow \pi}[d_i(\alpha_i(x), \alpha_i(y))]}{d(x, y)} \le Dr.$$

SODA23 paper also embeds (X,d) into distribution. We call this kind of embeddings stochastic embedding.

Example: Random Trees Consider the problem of embedding some finite metric into a tree metric. We can get an O(n) lowerbound via the unit edge length cycle C_n . However, if embedding into distortions is allowed, we can do $O(\log n)$.

Theorem 1.2 (Bartal) Let (X, d) be a metric space on n points with diameter Δ , let $\mathfrak{D}T$ be the set of tree metrics that dominate d, there is a distribution π on $\mathfrak{D}T$ such that (X, d) embeds into π with distortion $O(\log n)$.

2 Stochastic Embedding into ℓ_2

We first ignore the outlier condition and see if stochastic embeddings break the $\Omega(\log n)$ lower-bound.

Theorem 2.1 (Bourgain) For any metric space (X,d) and for any p, there is an embedding of (X,d) into $\ell_p^{O(\log^2 n)}$ with distortion $O(\log n)$.

Bourgain develops an algorithm that finds a desired embedding with probability at least 1/2. For the ℓ_2 case, the embedding has the following bounds:

Expansion
$$||f(x)-f(y)||_2 \le O(\log n)d(x,y)$$

Contraction
$$||f(x)-f(y)||_2 \ge \frac{d(x,y)}{O(1)}$$

¹https://web.stanford.edu/class/cs369m/cs369mlecture1.pdf

²https://home.ttic.edu/~harry/teaching/pdf/lecture3.pdf

The contraction bound is almost tight. Let *K* be the dimension of the target space. For the expansion bound, we have

$$||f(x) - f(y)||_2 = \left(\sum_{i=1}^K |f_i(x) - f_i(y)|^2\right)^{1/2}$$

$$\leq \left(\sum_{i=1}^K d(x, y)^2\right)^{1/2}$$

$$= \sqrt{K}d(x, y)$$

$$= O(\log n)d(x, y)$$

One thing we can try is to tighten the second line. Recall that for each dimension i a random subset $S_i \subseteq X$ is selected and the value of $f_i(x)$ is $\min_{s \in S_i} d(x,s)$. We want to show that for any fixed $x, y \in X$ and any dimension i the event that distance $|f_i(x) - f_i(y)|^2$ is much smaller than $d(x, y)^2$ happends with high probability.