Large-Scale Trade-Off Curve Computation for Incentive Allocation with Cardinality and Matroid Constraints

Yu Cong, Chao Xu, Yi Zhou

University of Electronic Science and Technology of China

August 30, 2025

Incentive allocation with constraints

A ride sharing company wants to send riders promotional coupons in the hope of more rides.

Image courtesy: ChatGPT-5

3/6

Multiple-choice knapsack

Input: *n* sets of coupons $K_1, ..., K_n$. Each coupon $e \in K_i$ has a non-negative cost $c_{s} \in \mathbb{Z}_{\perp}$ and value $v_{s} \in \mathbb{Z}_{\perp}$. A positive budget $b \in \mathbb{Z}_{\perp}$.

Output: A subset of coupons K that maximizes the total value $\sum_{n \in K} v_n$ while satisfying $|K \cap K_i| \le 1$ and $\sum_{n \in K} c_n \le b$.

Multiple-choice knapsack

Input: n sets of coupons $K_1, ..., K_n$. Each coupon $e \in K_i$ has a non-negative cost $c_{\rho} \in \mathbb{Z}_{\perp}$ and value $v_{\rho} \in \mathbb{Z}_{\perp}$. A positive budget $b \in \mathbb{Z}_{\perp}$.

Output: A subset of coupons K that maximizes the total value $\sum_{\rho \in K} v_{\rho}$ while satisfying $|K \cap K_i| \le 1$ and $\sum_{\rho \in K} c_{\rho} \le b$.

Three problems with this formulation:

- 1. Finding the exact optimum is NP-hard. So we consider solving it approximately.
- 2. Companies may run multiple campaigns at the same time. So a trade-off curve between budget and profit will be useful.
- 3. The multiple-choice constraint $|K \cap K_i| \le 1$ is too strong for real-world applications.

Linear programming relaxation

Input: n sets of coupons K_1, \ldots, K_n . Each coupon $e \in K_i$ has a non-negative cost $c_e \in \mathbb{Z}_+$ and value $v_e \in \mathbb{Z}_+$. A positive budget $b \in \mathbb{Z}_+$.

Linear programming relaxation

Input: n sets of coupons $K_1, ..., K_n$. Each coupon $e \in K_i$ has a non-negative cost $c_a \in \mathbb{Z}_+$ and value $v_a \in \mathbb{Z}_+$. A positive budget $b \in \mathbb{Z}_{+}$

$$\tau(b) = \max_{x} \quad v \cdot x$$

$$s.t. \quad c \cdot x \le b$$

$$x_{K_{i}} \in P_{K_{i}} \quad \forall i \in [n]$$

Output: function $\tau(b)$ for $b \in (0, +\infty)$.

Linear programming relaxation

Input: *n* sets of coupons $K_1, ..., K_n$. Each coupon $e \in K_i$ has a non-negative cost $c_a \in \mathbb{Z}_+$ and value $v_a \in \mathbb{Z}_+$. A positive budget $b \in \mathbb{Z}_{+}$

$$\tau(b) = \max_{x} \quad v \cdot x$$

$$s.t. \quad c \cdot x \le b$$

$$x_{K_{i}} \in P_{K_{i}} \quad \forall i \in [n]$$

Output: function $\tau(b)$ for $b \in (0, +\infty)$. We focus on 2 kinds of constraints of $X_{K} \in P_{K}$.

- 1. Cardinality. $X_{K_1} \in P_{K_2} \to \sum_{e \in K_1} X_e \le p$.
- 2. Matroid. $x_{K_i} \in P_{K_i} \rightarrow x_{K_i}$ is in the base polytope of a matroid M_i .

Results

We compute the curve $\tau(b)$ fast.

Theorem 1 Consider an incentive allocation problem with a total of m incentives. The trade-off curve is a piecewise linear concave function with k breakpoints.

- Cardinality constraint. $k = O(mp^{1/3})$ and τ can be computed in $O((k+m)\log m)$ time.
- Matroid constraint. $k = O(mr^{1/3})$ and τ can be computed in $O(Tk + k \log m)$ time.

Let's discuss this in detail at my poster!

#2001 Large-Scale Trade-Off Curve Computation for Incentive Allocation with Cardinality and Matroid Constraints

Yu Cong, Chao Xu, Yi Zhou

University of Electronic Science and Technology of China

Problem

We consider the incentive allocation problem with additional constraints.

Input: A set of coupons $E = \bigcup_i E_i$, where each coupon $e \in E$ has a value and a cost $v_e, c_e \in \mathbb{Z}_+$. Budget $B \in \mathbb{Z}_+$. Constraints \mathcal{F}_i on each subset E_i .

Output: A subset $X \subset E$ of coupons that maximizes the total value $\sum_{e \in X} v_e$ while satisfying the budget constraint $\sum_{e \in X} c_e \leq B$ and additional constraints $X \cap E_i \in \mathcal{F}_i$.

This problem is NP-hard. Consider its LP relaxation.

$$\tau(B) = \max_{x} v \cdot x$$

$$ct r \cdot v < R$$

Signature Function. Let $f_i(\lambda) = \max\{(v_{E_i} - \lambda c_{E_i})x|x \in \text{conv}(\mathcal{F}_i)\}$ be the signature function of agent i. The signature function is piecewise-linar and convex.

Theorem 4 $\tau(B)$ is piecewise-linear and concave. Computing $\tau(B)$ is straightforward if $f_i(\lambda)$ is known.

Finding $f_i(\lambda)$

Cardinality constraint. For fixed λ , computing $f_i(\lambda)=\max\{(v_{E_i}-\lambda c_{E_i})x\mid \mathbf{1}\cdot x\leq p\}$ is the same as finding the p largest coupons with respect to the weights $v_e-\lambda c_e$. If