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Incentive allocation with constraints

A ride sharing company wants to send riders promotional
coupons in the hope of more rides.

Image courtesy: ChatGPT-5
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Multiple-choice knapsack

Input: 𝑛 sets of coupons 𝐾1, … , 𝐾𝑛 . Each coupon 𝑒 ∈ 𝐾𝑖 has anon-negative cost 𝑐𝑒 ∈ ℤ+ and value 𝑣𝑒 ∈ ℤ+. A positive budget
𝑏 ∈ ℤ+.Output: A subset of coupons 𝐾 that maximizes the total value
∑𝑒∈𝐾 𝑣𝑒 while satisfying |𝐾 ∩ 𝐾𝑖| ≤ 1 and ∑𝑒∈𝐾 𝑐𝑒 ≤ 𝑏.

Three problems with this formulation:
1. Finding the exact optimum is NP-hard. So we consider
solving it approximately.

2. Companies may run multiple campaigns at the same time.
So a trade-off curve between budget and profit will be
useful.

3. The multiple-choice constraint |𝐾 ∩ 𝐾𝑖| ≤ 1 is too strongfor real-world applications.
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Linear programming relaxation

Input: 𝑛 sets of coupons 𝐾1, … , 𝐾𝑛 . Each coupon 𝑒 ∈ 𝐾𝑖 has anon-negative cost 𝑐𝑒 ∈ ℤ+ and value 𝑣𝑒 ∈ ℤ+. A positive budget
𝑏 ∈ ℤ+.

𝜏(𝑏) = max
𝑥

𝑣 ⋅ 𝑥

𝑠.𝑡. 𝑐 ⋅ 𝑥 ≤ 𝑏
𝑥𝐾𝑖 ∈ 𝑃𝐾𝑖 ∀𝑖 ∈ [𝑛]

Output: function 𝜏(𝑏) for 𝑏 ∈ (0, +∞).
We focus on 2 kinds of constraints of 𝑥𝐾𝑖 ∈ 𝑃𝐾𝑖 .
1. Cardinality. 𝑥𝐾𝑖 ∈ 𝑃𝐾𝑖→ ∑𝑒∈𝐾𝑖 𝑥𝑒 ≤ 𝑝.
2. Matroid. 𝑥𝐾𝑖 ∈ 𝑃𝐾𝑖→ 𝑥𝐾𝑖 is in the base polytope of amatroid 𝑀𝑖 .
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Results

We compute the curve 𝜏(𝑏) fast.
Theorem 1 Consider an incentive allocation problem with a
total of 𝑚 incentives. The trade-off curve is a piecewise linear
concave function with 𝑘 breakpoints.
• Cardinality constraint. 𝑘 = 𝑂(𝑚𝑝1/3) and 𝜏 can be
computed in 𝑂((𝑘 + 𝑚) log𝑚) time.

• Matroid constraint. 𝑘 = 𝑂(𝑚𝑟1/3) and 𝜏 can be computed
in 𝑂(𝑇𝑘 + 𝑘 log𝑚) time.



Let’s discuss this in detail at my poster!


