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Problem

We consider the incentive allocation problem with addi‐
tional constraints.
Input: A set of coupons 𝐸 = ⨃𝑖 𝐸𝑖, where each coupon
𝑒 ∈ 𝐸 has a value and a cost 𝑣𝑒, 𝑐𝑒 ∈ ℤ+. Budget 𝐵 ∈ ℤ+.
Constraints ℱ𝑖 on each subset 𝐸𝑖.
Output: A subset 𝑋 ⊂ 𝐸 of coupons that maximizes the
total value∑𝑒∈𝑋 𝑣𝑒while satisfying the budget constraint
∑𝑒∈𝑋 𝑐𝑒 ≤ 𝐵 and additional constraints 𝑋 ∩ 𝐸𝑖 ∈ ℱ𝑖.
This problem is NP‐hard. Consider its LP relaxation.

𝜏(𝐵) = max
𝑥

𝑣 ⋅ 𝑥

𝑠.𝑡. 𝑐 ⋅ 𝑥 ≤ 𝐵
𝑥𝐸𝑖 ∈ conv(ℱ𝑖) ∀𝑖 ∈ [𝑛]
𝑥 ∈ [0, 1]𝑚

Output: The entire curve 𝜏(𝐵) for 𝐵 ∈ [0,∞).
We consider 3 cases of additional constraints 𝑥𝐸𝑖 ∈ ℱ𝑖 :
1. Multiple‐choice. ∑

𝑒∈𝐸𝑖
𝑥𝑒 ≤ 1;

2. Cardinality. ∑
𝑒∈𝐸𝑖

𝑥𝑒 ≤ 𝑝;

3. Matroid. 𝑥𝐸𝑖 ∈ independence polytope of a matroid.

Existing works & Comparison

Constraint Type Result Fixed budget Trade‐off curve

Multiple Choice
Dyer [1984], Zemel [1984] 𝑂(𝑚) ‐

Javaudin et al. [2022] ‐ 𝑂(𝑚 log𝑚)
this paper ‐ 𝑂(𝑚 log𝑚)

Cardinality

Pisinger [2001] 𝑂(𝑚 log𝑉𝐶) ‐
Pisinger [2001] 𝑂(𝑚𝑝 + 𝑛𝐵) ‐
Tokuyama [2001] 𝑂(𝑚 log𝑚) ‐

this paper ‐ 𝑂((𝑘 + 𝑚) log𝑚)

Matroid
Camerini and Vercellis [1984] 𝑂(𝑚2 + 𝑇 log𝑚) ‐

Tokuyama [2001] 𝑂(𝑇 log𝑚) ‐
this paper ‐ 𝑂(𝑇𝑘 + 𝑘 log𝑚)

Table 1: Comparison of algorithms for incentive allocation: 𝑚 is the
total number of incentives,𝑀 is the maximum number of incentives
over each agent, 𝑝 is the max rank of the matroid constraint over
each agent, or the limit in the cardinality constraint. 𝑉 and 𝐶 is the
maximum value and cost of the incentives, respectively. 𝐵 is the
budget. 𝑘 = 𝑂(𝑚𝑝1/3) is the number of breakpoints of the trade‐off
curve. 𝑇 is the time complexity of matroid optimum base algorithm.

Methods

The idea is to take advantage of the independence
among the constraints ℱ𝑖 and reduce the optimization
problem to one in computational geometry.

Signature Function. Let 𝑓𝑖(𝜆) = max{(𝑣𝐸𝑖 − 𝜆𝑐𝐸𝑖)𝑥|𝑥 ∈
conv(ℱ𝑖)} be the signature function of agent 𝑖. The sig‐
nature function is piecewise‐linar and convex.
Lagrangian Dual. The Lagrangian dual of LP1 is therefore

min
𝜆

⒧𝐵𝜆 +
𝑖
𝑓𝑖(𝜆)⒭ .

Theorem 4 𝜏(𝐵) is piecewise‐linear and concave.
Computing 𝜏(𝐵) is straightforward if 𝑓𝑖(𝜆) is known.

Finding 𝑓𝑖(𝜆)
Cardinality constraint. For fixed 𝜆, computing 𝑓𝑖(𝜆) =
max{(𝑣𝐸𝑖 − 𝜆𝑐𝐸𝑖)𝑥 ∣ 1 ⋅ 𝑥 ≤ 𝑝} is the same as finding the 𝑝
largest coupons with respect to the weights 𝑣𝑒 − 𝜆𝑐𝑒. If
𝜆 is not fixed, this is computing the 𝑘‐level of univariate
linear functions.
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Figure 1: The bold line
forms a 2‐level in the line
arrangement.

Matroid constraint. For fixed 𝜆 under matroid con‐
straints, computing the signature function is equivalent
to finding the optimum‐weight base in a matroid. How‐
ever, thematroid generalization of 𝑘‐level problem is sig‐
nificantly harder. We use Eisner‐Severance method to
compute the curve.

Computational results

𝑚 𝑝 = 20 𝑝 = 40 𝑝 = 2000 𝑝 = 𝑚/5
scan opt scan opt scan opt scan opt

1 × 103 0.000 0.000 0.000 0.001 ‐ ‐ 0.003 0.002
5 × 103 0.003 0.005 0.006 0.005 0.137 0.027 0.091 0.02
1 × 104 0.008 0.010 0.014 0.012 0.384 0.048 0.384 0.048
5 × 104 0.043 0.089 0.080 0.087 2.634 0.187 9.531 0.326
1 × 105 0.094 0.216 0.173 0.223 5.795 0.397 38.275 1.222
5 × 105 0.528 2.911 0.937 2.952 33.760 3.398 TLE 10.500
1 × 106 1.147 7.291 1.989 7.140 72.485 7.604 TLE 23.203
1 × 107 12.994 100.512 23.863 101.675 TLE 101.775 TLE 133.974

Table 2: The time (in seconds) to compute the breakpoints on the
signature function under cardinality constraint using the optimum
𝑝‐level algorithm (opt) and the scan line algorithm (scan).
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