#2001 Large-Scale Trade-Off Curve Computation for Incentive Allocation with Cardinality and Matroid Constraints

Yu Cong, Chao Xu, Yi Zhou

University of Electronic Science and Technology of China

Problem

We consider the incentive allocation problem with additional constraints.

Input: A set of coupons $E = \bigcup_i E_i$, where each coupon $e \in E$ has a value and a cost $v_e, c_e \in \mathbb{Z}_+$. Budget $B \in \mathbb{Z}_+$. Constraints \mathcal{F}_i on each subset E_i .

Output: A subset $X \subset E$ of coupons that maximizes the total value $\sum_{e \in X} v_e$ while satisfying the budget constraint $\sum_{e \in X} c_e \leq B$ and additional constraints $X \cap E_i \in \mathcal{F}_i$.

This problem is NP-hard. Consider its LP relaxation.

$$\tau(B) = \max_{x} v \cdot x$$

$$s.t. \ c \cdot x \le B$$

$$x_{E_i} \in \text{conv}(\mathcal{F}_i) \ \forall i \in [n]$$

$$x \in [0, 1]^m$$

Output: The entire curve $\tau(B)$ for $B \in [0, \infty)$.

We consider 3 cases of additional constraints $x_{E_i} \in \mathcal{F}_i$:

- 1. Multiple-choice. $\sum_{e \in E_i} x_e \le 1$;
- 2. Cardinality. $\sum_{e \in E_i} x_e \le p$;
- 3. Matroid. $x_{E_i} \in \text{independence polytope of a matroid.}$

Existing works & Comparison

Constraint Type	Result	Fixed budget	Trade-off curve	
	Dyer [1984], Zemel [1984]	O(m)	_	
Multiple Choice	Javaudin et al. [2022]	-	$O(m \log m)$	
	this paper	-	$O(m \log m)$	
Cardinality	Pisinger [2001]	$O(m \log VC)$	-	
	Pisinger [2001]	O(mp + nB)	-	
	Tokuyama [2001]	$O(m \log m)$	-	
	this paper	_	$O((k + m) \log m)$	
Matroid	Camerini and Vercellis [1984]	$O(m^2 + T \log m)$	-	
	Tokuyama [2001]	$O(T \log m)$	-	
	this paper	_	$O(Tk + k \log m)$	

Table 1: Comparison of algorithms for incentive allocation: m is the total number of incentives, M is the maximum number of incentives over each agent, p is the max rank of the matroid constraint over each agent, or the limit in the cardinality constraint. V and C is the maximum value and cost of the incentives, respectively. B is the budget. $k = O(mp^{1/3})$ is the number of breakpoints of the trade-off curve. T is the time complexity of matroid optimum base algorithm.

Methods

The idea is to take advantage of the independence among the constraints \mathcal{F}_i and reduce the optimization problem to one in computational geometry.

Signature Function. Let $f_i(\lambda) = \max\{(v_{E_i} - \lambda c_{E_i})x | x \in \text{conv}(\mathcal{F}_i)\}$ be the signature function of agent i. The signature function is piecewise-linar and convex.

Lagrangian Dual. The Lagrangian dual of LP1 is therefore

$$\min_{\lambda} \left(B\lambda + \sum_{i} f_{i}(\lambda) \right).$$

Theorem 4 $\tau(B)$ is piecewise-linear and concave. Computing $\tau(B)$ is straightforward if $f_i(\lambda)$ is known.

Finding $f_i(\lambda)$

Cardinality constraint. For fixed λ , computing $f_i(\lambda) = \max\{(v_{E_i} - \lambda c_{E_i})x \mid \mathbf{1} \cdot x \leq p\}$ is the same as finding the p largest coupons with respect to the weights $v_e - \lambda c_e$. If λ is not fixed, this is computing the k-level of univariate linear functions.

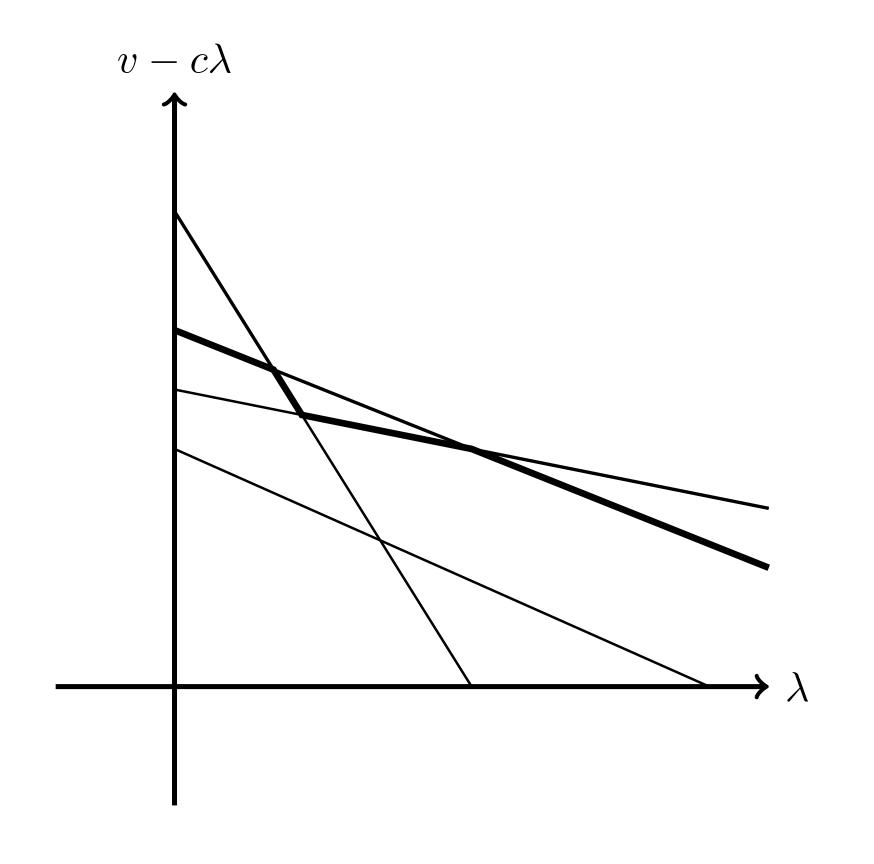


Figure 1: The bold line forms a 2-level in the line arrangement.

Matroid constraint. For fixed λ under matroid constraints, computing the signature function is equivalent to finding the optimum-weight base in a matroid. However, the matroid generalization of k-level problem is significantly harder. We use Eisner-Severance method to compute the curve.

Computational results

m	p = 20		p = 40		p = 2000		p = m/5	
	scan	opt	scan	opt	scan	opt	scan	opt
1×10^3	0.000	0.000	0.000	0.001	_	_	0.003	0.002
5×10^3	0.003	0.005	0.006	0.005	0.137	0.027	0.091	0.02
1×10^4	0.008	0.010	0.014	0.012	0.384	0.048	0.384	0.048
5×10^4	0.043	0.089	0.080	0.087	2.634	0.187	9.531	0.326
1×10^5	0.094	0.216	0.173	0.223	5.795	0.397	38.275	1.222
5×10^5	0.528	2.911	0.937	2.952	33.760	3.398	TLE	10.500
1×10^6	1.147	7.291	1.989	7.140	72.485	7.604	TLE	23.203
1×10^7	12.994	100.512	23.863	101.675	TLE	101.775	TLE	133.974

Table 2: The time (in seconds) to compute the breakpoints on the signature function under cardinality constraint using the optimum p-level algorithm (opt) and the scan line algorithm (scan).