\documentclass{beamer} \usetheme{Slides} \usepackage{algo} \usepackage{soul} % \usepackage{cancel} \newcommand{\munepsfig}[3][scale=1.0]{% <=============================== \begin{figure}[!htbp] \centering \vspace{2mm} \setlength{\fboxrule}{#3} % <=================================== \framebox{\includegraphics[#1]{#2.png}} % <===================== \label{fig:#2} \end{figure} } \title[Incentive allocation]{Large-Scale Trade-Off Curve Computation for Incentive Allocation with Cardinality and Matroid Constraints} \date{August 30, 2025} \author{\underline{Yu Cong}, Chao Xu, Yi Zhou} \institute[UESTC]{University of Electronic Science and Technology of China} % \AtBeginSection[]{ % \frame{\frametitle{Outline}\tableofcontents[currentsection, % subsectionstyle=show/show/shaded]} % } \begin{document} \begin{frame}[plain] \titlepage \scriptsize 34th International Joint Conference on Artificial Intelligence (IJCAI25) \end{frame} % introduce the problem. 3 things: trade-off curve, approximation, general constraints \begin{frame}{Incentive allocation with constraints} A ride sharing company wants to send riders promotional coupons in the hope of more rides. % each agent gets at most 1 coupon. \begin{figure} \includegraphics[width=.7\textwidth]{image/chatgpt.png} \scriptsize Image courtesy: ChatGPT-5 \end{figure} \end{frame} \begin{frame}{Multiple-choice knapsack} \textbf{Input}: $n$ sets of coupons $K_1,\dots,K_n$. Each coupon $e\in K_i$ has a non-negative cost $c_e\in \Z_+$ and value $v_e\in \Z_+$. A positive budget $b\in \Z_+$. \textbf{Output}: A (multi)set of coupons $K$ that maximizes the total value $\sum_{e\in K} c_e$ while satisfying \textcolor{Red}{$|K\cap K_i|\leq 1$} and $\sum_{e\in K} c_e\leq b$. \vspace{1em} \pause Three problems with this modeling: \begin{enumerate} \item Finding the exact optimum is NP-hard. So we consider solving it approximately. \item Companies may run multiple campaigns at the same time. So a trade-off curve between budget and profit will be useful. \item The multiple-choice constraint \textcolor{Red}{$|K\cap K_i|\leq 1$} is too weak for real applications. \end{enumerate} \end{frame} \begin{frame}{Linear programming formulation} \textcolor{gray}{ \textbf{Input}: $n$ sets of coupons $K_1,\dots,K_n$. Each coupon $e\in K_i$ has a non-negative cost $c_e\in \Z_+$ and value $v_e\in \Z_+$. \st{A positive budget $b\in \Z_+$.} } \pause \begin{equation*} \begin{aligned} \tau(b)= \max_x& & v\cdot x& & &\\ s.t.& & c\cdot x&\leq b & &\\ & & \mathcolor{Plum}{x_{K_i}}&\mathcolor{Plum}{\in P_{K_i}} & &\forall i\in [n]\\ \end{aligned} \end{equation*} \textbf{Output}: A compact representation of $\tau(b)$. \pause We focus on 2 kinds of constraints of \textcolor{Plum}{$x_{K_i}\in P_{K_i}$}. \begin{enumerate} \item Cardinality. \textcolor{Plum}{$x_{K_i}\in P_{K_i}$}→ $\sum_{e\in K_i}x_e\leq p$. \item Matroid. \textcolor{Plum}{$x_{K_i}\in P_{K_i}$}→ $x_{K_i}$ is in the base polytope of a matroid $M_i$. \end{enumerate} \end{frame} \begin{frame}{Results} We compute the curve $\tau(b)$ fast. \begin{theorem} Consider an incentive allocation problem with a total of $m$ incentives. The trade-off curve is a piecewise linear concave function with $k$ breakpoints. \begin{itemize} \item Cardinality constraint. $k=O(mp^{1/3})$ and $\tau$ can be computed in $O((k+m)\log m)$ time. \item Matroid constraint. $k=O(mr^{1/3})$ and $\tau$ can be computed in $O(Tk+k\log m)$ time. \end{itemize} \end{theorem} \end{frame} \begin{frame}[plain] \centering \Large \textit{Let's discuss this in detail at my poster!} \munepsfig[width=.8\linewidth]{image/poster}{1pt} % \begin{figure} % \includegraphics[width=0.8\linewidth]{image/poster.png} % \end{figure} \end{frame} \end{document}