This commit is contained in:
		@@ -56,14 +56,14 @@ We consider the incentive allocation problem with additional constraints.
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This problem is NP-hard. Consider its LP relaxation.
 | 
					This problem is NP-hard. Consider its LP relaxation.
 | 
				
			||||||
\begin{equation}\label{LP}
 | 
					\begin{equation*}\label{LP}
 | 
				
			||||||
\begin{aligned}
 | 
					\begin{aligned}
 | 
				
			||||||
\tau(B)=\max_x&\; & v\cdot x& & & \\
 | 
					\tau(B)=\max_x&\; & v\cdot x& & & \\
 | 
				
			||||||
s.t.&\;  & c \cdot x &\leq B & &\\
 | 
					s.t.&\;  & c \cdot x &\leq B & &\\
 | 
				
			||||||
& & x_{E_i}&\in \conv(\mathcal{F}_i)  & &\;\forall i\in [n]\\
 | 
					& & x_{E_i}&\in \conv(\mathcal{F}_i)  & &\;\forall i\in [n]\\
 | 
				
			||||||
& & x&\in [0,1]^m & &
 | 
					& & x&\in [0,1]^m & &
 | 
				
			||||||
\end{aligned}
 | 
					\end{aligned}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation*}
 | 
				
			||||||
\textbf{Output}: The entire curve $\tau(B)$ for $B\in [0,\infty)$.
 | 
					\textbf{Output}: The entire curve $\tau(B)$ for $B\in [0,\infty)$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We consider 3 cases of additional constraints $x_{E_i}\in \mathcal{F}_i$ :
 | 
					We consider 3 cases of additional constraints $x_{E_i}\in \mathcal{F}_i$ :
 | 
				
			||||||
@@ -106,12 +106,12 @@ The idea is to take advantage of the independence among the constraints $\mathca
 | 
				
			|||||||
\textcolor{DarkOrchid}{\textit{Signature Function.}} Let $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i}) x | x\in \conv(\mathcal F_i) \}$ be the signature function of agent $i$. The signature function is piecewise-linar and convex.
 | 
					\textcolor{DarkOrchid}{\textit{Signature Function.}} Let $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i}) x | x\in \conv(\mathcal F_i) \}$ be the signature function of agent $i$. The signature function is piecewise-linar and convex.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\textcolor{DarkOrchid}{\textit{Lagrangian Dual.}} The Lagrangian dual of LP\autoref{LP} is therefore
 | 
					\textcolor{DarkOrchid}{\textit{Lagrangian Dual.}} The Lagrangian dual of LP\autoref{LP} is therefore
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation*}
 | 
				
			||||||
\label{eq:Lagrangiandual}
 | 
					\label{eq:Lagrangiandual}
 | 
				
			||||||
\begin{aligned}
 | 
					\begin{aligned}
 | 
				
			||||||
\min_{\lambda} \left( B\lambda+\sum_i f_i(\lambda)\right).
 | 
					\min_{\lambda} \left( B\lambda+\sum_i f_i(\lambda)\right).
 | 
				
			||||||
\end{aligned}
 | 
					\end{aligned}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation*}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\begin{theorem}[4]\large
 | 
					\begin{theorem}[4]\large
 | 
				
			||||||
$\tau(B)$ is piecewise-linear and concave.
 | 
					$\tau(B)$ is piecewise-linear and concave.
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user