@@ -6,12 +6,12 @@
 | 
			
		||||
 | 
			
		||||
\ProvidesPackage{beamerthemePoster}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\RequirePackage{tikz}
 | 
			
		||||
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,calc}
 | 
			
		||||
\RequirePackage[dvipsnames]{xcolor}
 | 
			
		||||
% \RequirePackage{tikz}
 | 
			
		||||
% \usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,calc}
 | 
			
		||||
% \RequirePackage{lmodern}
 | 
			
		||||
% \RequirePackage{textcomp}
 | 
			
		||||
% \RequirePackage{amsmath,amssymb}
 | 
			
		||||
\RequirePackage{amsmath,amssymb,amsthm}
 | 
			
		||||
% \usefonttheme{professionalfonts}
 | 
			
		||||
 | 
			
		||||
\usepackage{ragged2e}
 | 
			
		||||
@@ -88,16 +88,40 @@
 | 
			
		||||
%set some beamer theme options
 | 
			
		||||
  \setbeamertemplate{title page}[default][colsep=-4bp,rounded=true]
 | 
			
		||||
  \setbeamertemplate{sections/subsections in toc}[square]
 | 
			
		||||
  \setbeamertemplate{items}[circle]
 | 
			
		||||
  \setbeamertemplate{items}[default]
 | 
			
		||||
  \setbeamertemplate{blocks}[width=0.0]
 | 
			
		||||
  \beamertemplatenavigationsymbolsempty
 | 
			
		||||
%set bibliography style
 | 
			
		||||
 \setbeamertemplate{bibliography item}[text]
 | 
			
		||||
 \setbeamercolor{bibliography item}{fg=color0,bg=color3}
 | 
			
		||||
 \setbeamercolor{bibliography entry author}{fg=color0,bg=color3}
 | 
			
		||||
 \setbeamerfont{bibliography item}{size=\small}
 | 
			
		||||
 \setbeamerfont{bibliography entry author}{size=\small}
 | 
			
		||||
 | 
			
		||||
%  \setbeamertemplate{bibliography item}[author]
 | 
			
		||||
%  \setbeamercolor{bibliography item}{fg=color0,bg=color3}
 | 
			
		||||
%  \setbeamercolor{bibliography entry author}{fg=color0,bg=color3}
 | 
			
		||||
%  \setbeamerfont{bibliography item}{size=\small}
 | 
			
		||||
%  \setbeamerfont{bibliography entry author}{size=\small}
 | 
			
		||||
% theorem env
 | 
			
		||||
\setbeamertemplate{theorem begin}{%
 | 
			
		||||
{
 | 
			
		||||
  \vspace{5pt}%
 | 
			
		||||
  \usebeamerfont*{block title}%
 | 
			
		||||
  \selectfont%
 | 
			
		||||
  \usebeamercolor[fg]{block title}%
 | 
			
		||||
  \textbf{%
 | 
			
		||||
  \inserttheoremname
 | 
			
		||||
  % \inserttheoremnumber
 | 
			
		||||
  \ifx \inserttheoremaddition \empty \else\ \inserttheoremaddition\fi
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
\setbeamertemplate{theorem end}{\vspace{5pt}}
 | 
			
		||||
% proof env
 | 
			
		||||
\setbeamertemplate{proof begin}{%
 | 
			
		||||
{\vspace{5pt}
 | 
			
		||||
\usebeamercolor[fg]{block title}
 | 
			
		||||
\textit{\textbf{Proof:}}}
 | 
			
		||||
}
 | 
			
		||||
\setbeamertemplate{proof end}{
 | 
			
		||||
\qedhere
 | 
			
		||||
\vspace{5pt}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
%
 | 
			
		||||
%==============================================================================
 | 
			
		||||
@@ -105,9 +129,9 @@
 | 
			
		||||
%==============================================================================
 | 
			
		||||
\setbeamertemplate{headline}{
 | 
			
		||||
 \leavevmode
 | 
			
		||||
  \begin{columns}
 | 
			
		||||
  % \begin{columns}
 | 
			
		||||
 | 
			
		||||
   \begin{column}{\linewidth}
 | 
			
		||||
  %  \begin{column}{\linewidth}
 | 
			
		||||
    \vskip2cm
 | 
			
		||||
    \centering
 | 
			
		||||
    %\usebeamercolor{title in headline}
 | 
			
		||||
@@ -118,14 +142,14 @@
 | 
			
		||||
    %\usebeamercolor{institute in headline}
 | 
			
		||||
{\color{fg} \large{\insertinstitute}\\[1ex]}
 | 
			
		||||
        \vskip2cm
 | 
			
		||||
      \end{column}
 | 
			
		||||
      % \end{column}
 | 
			
		||||
      %  \begin{column}{.2\linewidth}
 | 
			
		||||
      %    \begin{center}
 | 
			
		||||
      %      \includegraphics[width=0.55\linewidth]{image/uestc.png}
 | 
			
		||||
      %    \end{center}
 | 
			
		||||
      %  \end{column}
 | 
			
		||||
      %   \vspace{1cm}
 | 
			
		||||
    \end{columns}
 | 
			
		||||
    % \end{columns}
 | 
			
		||||
 | 
			
		||||
%%% additional bar under titles
 | 
			
		||||
%\begin{beamercolorbox}[colsep=0.5cm]{colorbar}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										138
									
								
								poster.tex
									
									
									
									
									
								
							
							
						
						
									
										138
									
								
								poster.tex
									
									
									
									
									
								
							@@ -8,9 +8,16 @@
 | 
			
		||||
  hmargin=2.5cm, % little modification of margins
 | 
			
		||||
}
 | 
			
		||||
\usepackage{lipsum}
 | 
			
		||||
\usepackage{MnSymbol}
 | 
			
		||||
\usepackage{multirow}
 | 
			
		||||
\usepackage{booktabs}
 | 
			
		||||
\usepackage{soul}
 | 
			
		||||
\usepackage{graphicx}
 | 
			
		||||
\usepackage{natbib}
 | 
			
		||||
\usepackage{bibentry}
 | 
			
		||||
% \usepackage{hyperref}[colorlinks=true,urlcolor=Blue,citecolor=Green,linkcolor=BrickRed,unicode]
 | 
			
		||||
 | 
			
		||||
%
 | 
			
		||||
\usepackage[utf8]{inputenc}
 | 
			
		||||
\DeclareMathOperator*{\conv}{conv}
 | 
			
		||||
 | 
			
		||||
\linespread{1.15}
 | 
			
		||||
%
 | 
			
		||||
@@ -24,7 +31,7 @@
 | 
			
		||||
\#2001 \; Large-Scale Trade-Off Curve Computation for Incentive Allocation with Cardinality and Matroid Constraints
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\author{\underline{Yu Cong}, Chao Xu, Yi Zhou}
 | 
			
		||||
\author{\texorpdfstring{\underline{Yu Cong}}{Yu Cong}, Chao Xu, Yi Zhou}
 | 
			
		||||
\institute[UESTC]{University of Electronic Science and Technology of China}
 | 
			
		||||
 | 
			
		||||
\date{\today}
 | 
			
		||||
@@ -40,20 +47,141 @@
 | 
			
		||||
\begin{multicols}{2}
 | 
			
		||||
 | 
			
		||||
\section{Problem}
 | 
			
		||||
We consider the incentive allocation problem with additional constraints.
 | 
			
		||||
 | 
			
		||||
\textbf{Input}: A set of coupons $E=\bigcupdot_i E_i$, where each coupon $e\in E$ has value and cost $v_e,c_e\in \mathbb{Z}_+$. Budget $B\in \mathbb{Z}_+$. Constraints $\mathcal F_i$ on each subset $E_i$.
 | 
			
		||||
 | 
			
		||||
\section{Existing works}
 | 
			
		||||
\textcolor{Gray}{
 | 
			
		||||
\textbf{Output}: A subset $X\subset E$ of coupons that maximizes the total value $\sum_{e\in X}v_e$ while satisfying $\sum_{e\in X}c_e\leq B$ and additional constraints $X\cap E_i\in \mathcal F_i$.
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
This problem is NP-hard. Consider its LP relaxation.
 | 
			
		||||
\begin{equation}\label{LP}
 | 
			
		||||
\begin{aligned}
 | 
			
		||||
\tau(B)=\max_x&\; & v\cdot x& & & \\
 | 
			
		||||
s.t.&\;  & c \cdot x &\leq B & &\\
 | 
			
		||||
& & x_{E_i}&\in \conv(\mathcal{F}_i)  & &\;\forall i\in [n]\\
 | 
			
		||||
& & x&\in [0,1]^m & &
 | 
			
		||||
\end{aligned}
 | 
			
		||||
\end{equation}
 | 
			
		||||
\textbf{Output}: The entire curve $\tau(B)$ for $B\in [0,\infty)$.
 | 
			
		||||
 | 
			
		||||
We consider 3 cases of additional constraints $x_{E_i}\in \mathcal{F}_i$ :
 | 
			
		||||
\begin{enumerate}
 | 
			
		||||
\item Multiple-choice. $\sum\limits_{e\in E_i}x_e\leq 1$;
 | 
			
		||||
\item Cardinality. $\sum\limits_{e\in E_i}x_e\leq p$;
 | 
			
		||||
\item Matroid. $x_{E_i}\in \text{independence polytope of a matroid}$.
 | 
			
		||||
\end{enumerate}
 | 
			
		||||
 | 
			
		||||
\section{Existing works \& Comparison}
 | 
			
		||||
 | 
			
		||||
\begin{table}[!htb]
 | 
			
		||||
\centering
 | 
			
		||||
\small
 | 
			
		||||
    \begin{tabular}{cccc}
 | 
			
		||||
         Constraint Type & Result & Fixed budget & Trade-off curve \\
 | 
			
		||||
         \bottomrule
 | 
			
		||||
         \hline
 | 
			
		||||
         \multirow{3}{*}{Multiple Choice}& \cite{Dyer84,ZEMEL1984123}& $O(m)$ & -  \\
 | 
			
		||||
         &\cite{10.1109/ITSC55140.2022.9922143} & - & $O(m\log m)$ \\
 | 
			
		||||
         & \textcolor{OrangeRed}{this paper} & - & $O(m\log m)$ \\
 | 
			
		||||
         \hline
 | 
			
		||||
         \multirow{4}{*}{Cardinality}& \cite{DavidPisinger} & $O(m\log VC)$  & -\\
 | 
			
		||||
           & \cite{DavidPisinger} & $O(mp+nB)$  & -  \\
 | 
			
		||||
          & \cite{minimaxoptimization} & $O(m\log m)$  & -  \\
 | 
			
		||||
          & \textcolor{OrangeRed}{this paper} & - & $O((k+m)\log m)$ \\
 | 
			
		||||
         \hline
 | 
			
		||||
         \multirow{3}{*}{Matroid}& \cite{CAMERINI1984157} & $O(m^2 + T \log m)$ & -\\
 | 
			
		||||
        & \cite{minimaxoptimization} & $O(T \log m)$ & - \\
 | 
			
		||||
        & \textcolor{OrangeRed}{this paper} & - & $O(Tk+k\log m)$\\
 | 
			
		||||
        \bottomrule
 | 
			
		||||
    \end{tabular}
 | 
			
		||||
\caption{Comparison of algorithms for incentive allocation: $m$ is the total number of incentives, $M$ is the maximum number of incentives over each agent, $p$ is the max rank of the matroid constraint over each agent, or the limit in the cardinality constraint. $V$ and $C$ is the maximum value and cost of the incentives, respectively. $B$ is the budget. $k=O(mp^{1/3})$ is the number of breakpoints of the trade-off curve. $T$ is the time complexity of matroid optimum base algorithm.}
 | 
			
		||||
\label{runtimetable}
 | 
			
		||||
\end{table}
 | 
			
		||||
 | 
			
		||||
\section{Methods}
 | 
			
		||||
The idea is to take advantage of the independence among the constraints $\mathcal{F}_i$ and to reduce the optimization problem to one in computational geometry.
 | 
			
		||||
 | 
			
		||||
\section{Results}
 | 
			
		||||
\textcolor{DarkOrchid}{\textit{Signature Function.}} Let $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i}) x | x\in \conv(\mathcal F_i) \}$ be the signature function of agent $i$. The signature function is piecewise-linar and convex.
 | 
			
		||||
 | 
			
		||||
\textcolor{DarkOrchid}{\textit{Lagrangian Dual.}} The Lagrangian dual of LP\autoref{LP} is therefore
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:Lagrangiandual}
 | 
			
		||||
\begin{aligned}
 | 
			
		||||
\min_{\lambda} \left( B\lambda+\sum_i f_i(\lambda)\right).
 | 
			
		||||
\end{aligned}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{theorem}[4]\large
 | 
			
		||||
$\tau(B)$ is piecewise-linear and concave.
 | 
			
		||||
\end{theorem}
 | 
			
		||||
 | 
			
		||||
Computing $\tau(B)$ is straightforward if $f_i(\lambda)$ is known.
 | 
			
		||||
 | 
			
		||||
\subsection{Finding $f_i(\lambda)$}
 | 
			
		||||
\textcolor{DarkOrchid}{\textit{Cardinality constraint.}}
 | 
			
		||||
For fixed $\lambda$, computing $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i})x \mid \mathbf{1}\cdot x \leq p\}$ is the same as finding the $p$ largest coupons with respect to the weights $v_e - \lambda c_e$. If $\lambda$ is not fixed, this is computing the \emph{$k$-level} of univariate linear functions.
 | 
			
		||||
\begin{figure}[htb]
 | 
			
		||||
    \begin{minipage}[c]{0.6\linewidth} % Minipage for the image
 | 
			
		||||
        \centering
 | 
			
		||||
        \includegraphics[width=\linewidth]{image/klevel_black.pdf} % Replace with your image
 | 
			
		||||
    \end{minipage}
 | 
			
		||||
    \hfill % Optional: Adds horizontal space between minipages
 | 
			
		||||
    \begin{minipage}[c]{0.39\linewidth} % Minipage for the caption
 | 
			
		||||
        \caption{The bold line forms a $2$-level in the line arrangement.}
 | 
			
		||||
        \label{fig:klevel}
 | 
			
		||||
    \end{minipage}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\textcolor{DarkOrchid}{\textit{Matroid constraint.}}
 | 
			
		||||
For fixed $\lambda$ under matroid constraints, computing the signature function is equivalent to finding the optimum-weight base in a matroid.
 | 
			
		||||
However, the matroid generalization of $k$-level problem is significantly harder. We use Eisner-Severance method to compute the curve.
 | 
			
		||||
\section{Computational results}
 | 
			
		||||
 | 
			
		||||
\begin{table}[!ht]
 | 
			
		||||
\small
 | 
			
		||||
    \centering
 | 
			
		||||
    \begin{tabular}{ccccccccc}
 | 
			
		||||
        \toprule
 | 
			
		||||
         \multirow{2}*{$m$} & \multicolumn{2}{c}{$p=20$} & \multicolumn{2}{c}{$p=40$} &  \multicolumn{2}{c}{$p=2000$} & \multicolumn{2}{c}{$p=m/5$}\\
 | 
			
		||||
         \cmidrule(lr){2-3}  \cmidrule(lr){4-5} \cmidrule(lr){6-7} \cmidrule(lr){8-9}
 | 
			
		||||
         & scan & opt & scan & opt & scan & opt & scan & opt\\
 | 
			
		||||
         \midrule
 | 
			
		||||
        $1\times 10^3$            & 0.000 & 0.000 & 0.000 & 0.001 & - & - & 0.003& 0.002 \\
 | 
			
		||||
        $5\times 10^3$    & 0.003 & 0.005 & 0.006 & 0.005 & 0.137 & 0.027 & 0.091& 0.02\\
 | 
			
		||||
        $1\times 10^4$            & 0.008 & 0.010 & 0.014 & 0.012 & 0.384 & 0.048 & 0.384 & 0.048\\
 | 
			
		||||
        $5\times 10^4$    & 0.043 & 0.089 & 0.080 & 0.087 & 2.634 & 0.187 & 9.531& 0.326\\
 | 
			
		||||
        $1\times 10^5$            & 0.094 & 0.216 & 0.173 & 0.223 & 5.795 & 0.397 & 38.275& 1.222\\
 | 
			
		||||
        $5\times 10^5$    & 0.528 & 2.911 & 0.937 & 2.952 & 33.760 & 3.398 & TLE & 10.500 \\
 | 
			
		||||
        $1\times 10^6$            & 1.147 & 7.291 & 1.989 & 7.140 & 72.485 & 7.604 & TLE & 23.203\\
 | 
			
		||||
        $1\times 10^7$            & 12.994 & 100.512 & 23.863 & 101.675 & TLE & 101.775 & TLE & 133.974\\
 | 
			
		||||
        
 | 
			
		||||
    %     \bottomrule
 | 
			
		||||
    % \end{tabular}
 | 
			
		||||
    % \begin{tabular}{ccccc}
 | 
			
		||||
    %     % \toprule
 | 
			
		||||
    %      \multirow{2}*{$m$} & \multicolumn{2}{c}{$p=2000$} & \multicolumn{2}{c}{$p=m/5$}\\
 | 
			
		||||
    %      \cmidrule(lr){2-3}  \cmidrule(lr){4-5} 
 | 
			
		||||
    %      & scan & opt & scan & opt \\
 | 
			
		||||
    %      \midrule
 | 
			
		||||
    %     $1\times 10^3$      & - & - & 0.003& 0.002 \\
 | 
			
		||||
    %     $5\times 10^3$      & 0.137 & 0.027 & 0.091& 0.02\\
 | 
			
		||||
    %     $1\times 10^4$      & 0.384 & 0.048 & 0.384 & 0.048\\
 | 
			
		||||
    %     $5\times 10^4$      & 2.634 & 0.187 & 9.531& 0.326\\
 | 
			
		||||
    %     $1\times 10^5$      & 5.795 & 0.397 & 38.275& 1.222\\
 | 
			
		||||
    %     $5\times 10^5$      & 33.760 & 3.398 & TLE & 10.500 \\
 | 
			
		||||
    %     $1\times 10^6$      & 72.485 & 7.604 & TLE & 23.203\\
 | 
			
		||||
    %     $1\times 10^7$      & TLE & 101.775 & TLE & 133.974\\
 | 
			
		||||
        
 | 
			
		||||
        \bottomrule
 | 
			
		||||
    \end{tabular}
 | 
			
		||||
    \caption{The time (in seconds) to compute the breakpoints on the signature function under cardinality constraint using the optimum $p$-level algorithm (opt) and the scan line algorithm (scan).}
 | 
			
		||||
    \label{tab:klevel}
 | 
			
		||||
\end{table}
 | 
			
		||||
 | 
			
		||||
\bibliographystyle{plainnat}
 | 
			
		||||
\nobibliography{ijcai25}
 | 
			
		||||
\end{multicols}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user