From 19c544e04ca206d50dee86964552810dc0c179e4 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Fri, 29 Aug 2025 20:55:07 +0800 Subject: [PATCH] z --- slides.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/slides.tex b/slides.tex index c4183b9..cf1cd65 100644 --- a/slides.tex +++ b/slides.tex @@ -56,15 +56,15 @@ Three problems with this formulation: \begin{enumerate} \item Finding the exact optimum is NP-hard. So we consider solving it approximately. \item Companies may run multiple campaigns at the same time. So a trade-off curve between budget and profit will be useful. -\item The multiple-choice constraint \textcolor{Red}{$|K\cap K_i|\leq 1$} is too weak for real-world applications. +\item The multiple-choice constraint \textcolor{Red}{$|K\cap K_i|\leq 1$} is too strong for real-world applications. \end{enumerate} \end{frame} \begin{frame}{Linear programming relaxation} -\textcolor{gray}{ +% \textcolor{gray}{ \textbf{Input}: $n$ sets of coupons $K_1,\dots,K_n$. Each coupon $e\in K_i$ has a non-negative cost $c_e\in \Z_+$ and value $v_e\in \Z_+$. \st{A positive budget $b\in \Z_+$.} -} +% } \pause \begin{equation*} \begin{aligned} @@ -74,7 +74,7 @@ s.t.& & c\cdot x&\leq b & &\\ \end{aligned} \end{equation*} -\textbf{Output}: A compact representation of $\tau(b)$. +\textbf{Output}: function $\tau(b)$ for $b\in (0,+\infty)$. \pause We focus on 2 kinds of constraints of \textcolor{Plum}{$x_{K_i}\in P_{K_i}$}.